OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A467–A476

Phonon thermal conductivity suppression of bulk silicon nanowire composites for efficient thermoelectric conversion

Ting-Gang Chen, Peichen Yu, Rone-Hwa Chou, and Ci-Ling Pan  »View Author Affiliations


Optics Express, Vol. 18, Issue S3, pp. A467-A476 (2010)
http://dx.doi.org/10.1364/OE.18.00A467


View Full Text Article

Enhanced HTML    Acrobat PDF (7066 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vertically-aligned silicon nanowires (SiNWs) that demonstrate reductions of phonon thermal conductivities are ideal components for thermoelectric devices. In this paper, we present large-area silicon nanowire arrays in various lengths using a silver-induced, electroless-etching method that is applicable to both n- and p-type substrates. The measured thermal conductivities of nanowire composites are significantly reduced by up to 43%, compared to that of bulk silicon. Detailed calculations based on the series thermal resistance and phonon radiative transfer models confirm the reduction of thermal conductivity not only due to the increased air fraction, but also the nanowire size effect, suggesting the soundness of employing bulk silicon nanowire composites as efficient thermoelectric materials.

© 2010 OSA

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(130.1750) Integrated optics : Components
(160.4236) Materials : Nanomaterials

ToC Category:
Radiative Transfer

History
Original Manuscript: July 13, 2010
Revised Manuscript: September 3, 2010
Manuscript Accepted: September 3, 2010
Published: September 9, 2010

Citation
Ting-Gang Chen, Peichen Yu, Rone-Hwa Chou, and Ci-Ling Pan, "Phonon thermal conductivity suppression of bulk silicon nanowire composites for efficient thermoelectric conversion," Opt. Express 18, A467-A476 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A467


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. DiSalvo, “Thermoelectric cooling and power generation, ” Science 285(5428), 703–706 (1999). [CrossRef] [PubMed]
  2. G. S. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York (2001).
  3. G. A. Slack, CRC Handbook of Thermoelectrics, D. M. Rowe Ed., Boca Raton, Florida, (1995).
  4. R. Venkatasubramanian, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 175–201 (2001).
  5. G. Chen, “Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals,” Academic Press 71, 203–259 (2001).
  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001). [CrossRef] [PubMed]
  7. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70(22), 2957–2959 (1997). [CrossRef]
  8. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008). [CrossRef] [PubMed]
  9. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008). [CrossRef] [PubMed]
  10. K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002). [CrossRef]
  11. K. Q. Peng, Y. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13(2), 127–132 (2003). [CrossRef]
  12. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef]
  13. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961). [CrossRef]
  14. D. G. Cahill, “Thermal conductivity measurement from 30~750K: the 3ω method,” Rev. Sci. Instrum. 61(2), 802–808 (1990). [CrossRef]
  15. S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan, and F. Yu, “Effective Thermal Conductivity of Moist Porous Sintered Nickel Material,” Int. J. Thermophys. 27(1), 304–313 (2006). [CrossRef]
  16. J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material,” J. Therm. Anal. Calorim. (to be published).
  17. H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci. 65(3), 1101–1108 (2010). [CrossRef]
  18. Y. He, “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations,” Thermochim. Acta 436(1-2), 122–129 (2005). [CrossRef]
  19. G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57(23), 14958–14973 (1998). [CrossRef]
  20. K. Miyazaki, T. Arashi, D. Makino, and H. Tsukamoto, “Heat Conduction in Microstructured Materials,” IEEE Trans. Compon. Packag. Tech. 29(2), 247–253 (2006). [CrossRef]
  21. S. Sihn, and K. Ajit, Roy, “Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation,” COMSOL Conference (2009).
  22. B. Yang and G. Chen, “Lattice Dynamics Study Of Anisotropic Heat Conduction in Superlattices,” Microscale Thermophys. Eng. 5(2), 107–116 (2001). [CrossRef]
  23. G. Chen and M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett. 71(19), 2761–2763 (1997). [CrossRef]
  24. J. M. Ziman, “Electrons and Phonons,” Oxford University Press, London, (1985).
  25. D. Terris, K. Joulain, D. Lacroix, and D. Lemonnier, “Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms,” J. Phys.: Conf. Ser. 92, 012077 (2007). [CrossRef]
  26. H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited