OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A536–A543

Patterned dye structures limit reabsorption in luminescent solar concentrators

Shufen Tsoi, Dirk J. Broer, Cees W. M. Bastiaansen, and Michael G. Debije  »View Author Affiliations

Optics Express, Vol. 18, Issue S4, pp. A536-A543 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work describes a method for limiting internal losses of a luminescent solar concentrator (LSC) due to reabsorption through patterning the fluorescent dye doped coating of the LSC. By engineering the dye coating into regular line patterns with fill factors ranging from 20 – 80%, the surface coverage of the dye molecules were reduced, thereby decreasing the probability of the re-emitted light encountering another dye molecule and the probability of reabsorption. Two types of fluorescent dyes with different quantum yields were used to examine the effects of patterning on LSC performance. The effect of various dimension and geometry of the patterns on the efficiency and edge emission of LSC are presented and analyzed.

© 2010 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.0260) Physical optics : Physical optics
(260.2510) Physical optics : Fluorescence
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Solar Concentrators

Original Manuscript: July 9, 2010
Revised Manuscript: September 9, 2010
Manuscript Accepted: September 11, 2010
Published: September 30, 2010

Shufen Tsoi, Dirk J. Broer, Cees W. Bastiaansen, and Michael G. Debije, "Patterned dye structures limit reabsorption in luminescent solar concentrators," Opt. Express 18, A536-A543 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kurtz, Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (National Renewable Energy Labortatory, 2009). [PubMed]
  2. J. S. Batchelder, A. H. Zewaii, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979). [CrossRef] [PubMed]
  3. J. S. Batchelder, A. H. Zewaii, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981). [CrossRef] [PubMed]
  4. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008). [CrossRef] [PubMed]
  5. A. Goetzberger, and W. Greubel, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977). [CrossRef]
  6. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Buchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donega, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators-a review of recent results,” Opt. Express 16, 21773–21792 (2008). [CrossRef] [PubMed]
  7. W. H. Weber, and J. Lambe, “Luminescent greenhouse collector for solar-radiation,” Appl. Opt. 15, 2299–2300 (1976). [CrossRef] [PubMed]
  8. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 6, 257–259 (2008) (RRL). [CrossRef]
  9. R. W. Olsen, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20, 2934–2940 (1981). [CrossRef]
  10. R. Soti, E. Farkas, M. Hilbert, Z. Farkas, and I. Ketskemety, “Photon transport in luminescent solar concentrators,” J. Lumin. 20, 3733–3754 (1981).
  11. B. Rowan, L. Wilson, and B. S. Richards, “Visible and near-infrared emitting lanthanids complexes for luminescent solar concentrators,” in 24th European Photovoltaic Solar Energy Conference (Humburg, Germany, 2009), pp. 346–349.
  12. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrator,” Semiconductors 38, 909–917 (2004). [CrossRef]
  13. S. J. Gallapher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007). [CrossRef]
  14. A. M. Taleb, “Self absorption treatment for luminescent solar concentrators,” Renew. Energy 26, 137–142 (2002). [CrossRef]
  15. L. R. Wilson, and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212–220 (2009). [CrossRef] [PubMed]
  16. M. J. Kastelijn, C. W. M. Bastiaansen, and M. G. Debije, “Influence of waveguide material on light emission in luminescent solar concentrators,” Opt. Mater. 31, 1720–1722 (2009). [CrossRef]
  17. P. P. C. Verbunt, A. Kaiser, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009). [CrossRef]
  18. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007). [CrossRef]
  19. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited