OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A544–A553

Lower bound of energy dissipation in optical excitation transfer via optical near-field interactions

Makoto Naruse, Hirokazu Hori, Kiyoshi Kobayashi, Petter Holmström, Lars Thylén, and Motoichi Ohtsu  »View Author Affiliations


Optics Express, Vol. 18, Issue S4, pp. A544-A553 (2010)
http://dx.doi.org/10.1364/OE.18.00A544


View Full Text Article

Enhanced HTML    Acrobat PDF (1038 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically analyzed the lower bound of energy dissipation required for optical excitation transfer from smaller quantum dots to larger ones via optical near-field interactions. The coherent interaction between two quantum dots via optical near-fields results in unidirectional excitation transfer by an energy dissipation process occurring in the larger dot. We investigated the lower bound of this energy dissipation, or the intersublevel energy difference at the larger dot, when the excitation appearing in the larger dot originated from the excitation transfer via optical near-field interactions. We demonstrate that the energy dissipation could be as low as 25 μeV. Compared with the bit flip energy of an electrically wired device, this is about 104 times more energy efficient. The achievable integration density of nanophotonic devices is also analyzed based on the energy dissipation and the error ratio while assuming a Yukawa-type potential for the optical near-field interactions.

© 2010 OSA

OCIS Codes
(200.3050) Optics in computing : Information processing
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(260.2160) Physical optics : Energy transfer
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Energy Transfer

History
Original Manuscript: August 2, 2010
Revised Manuscript: August 31, 2010
Manuscript Accepted: September 23, 2010
Published: October 5, 2010

Citation
Makoto Naruse, Hirokazu Hori, Kiyoshi Kobayashi, Petter Holmström, Lars Thylén, and Motoichi Ohtsu, "Lower bound of energy dissipation in optical excitation transfer via optical near-field interactions," Opt. Express 18, A544-A553 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S4-A544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. ITU-T Focus Group on ICTs and Climate Change, http://www.itu.int/ITU-T/focusgroups/climate/index.html .
  2. L. B. Kish, “Moore's law and the energy requirement of computing versus performance,” IEE Proc., Circ. Devices Syst. 151(2), 190–194 (2004). [CrossRef]
  3. J. Gea-Banacloche, “Minimum energy requirements for quantum computation,” Phys. Rev. Lett. 89(21), 217901 (2002). [CrossRef] [PubMed]
  4. The Green Grid, http://www.thegreengrid.org/ .
  5. R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM Optical IP Networks: A Cost and Energy Perspective,” J. Lightwave Technol. 27(3), 243–252 (2009). [CrossRef]
  6. K. Sato and H. Hasegawa, “Prospects and Challenges of Multi-Layer Optical Networks,” IEICE Trans. Commun, E 90-B, 1890–1902 (2007). [CrossRef]
  7. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008).
  8. L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010). [CrossRef]
  9. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002). [CrossRef] [PubMed]
  10. M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009). [CrossRef]
  11. T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004). [CrossRef]
  12. J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006). [CrossRef]
  13. K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008). [CrossRef]
  14. T. Mano and N. Koguchi, “Nanometer-scale GaAs ring structure grown by droplet epitaxy,” J. Cryst. Growth 278(1-4), 108–112 (2005). [CrossRef]
  15. W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003). [CrossRef]
  16. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003). [CrossRef]
  17. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007). [CrossRef]
  18. M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006). [CrossRef] [PubMed]
  19. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture based on optical near-field interaction between quantum dots,” Opt. Lett. 30(2), 201–203 (2005). [CrossRef] [PubMed]
  20. H. Hori, “Electronic and Electromagnetic Properties in Nanometer Scales,” in Optical and Electronic Process of Nano-Matters, M. Ohtsu, ed. (Kluwer Academic, 2001), pp. 1–55.
  21. P. Kocher, J. Jaffe, and B. Jun, “Introduction to Differential Power Analysis and Related Attacks,” http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf .
  22. M. Naruse, H. Hori, K. Kobayashi, and M. Ohtsu, “Tamper resistance in optical excitation transfer based on optical near-field interactions,” Opt. Lett. 32(12), 1761–1763 (2007). [CrossRef] [PubMed]
  23. H. Haug, and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2004).
  24. S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003). [CrossRef]
  25. H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer-Verlag, Berlin, 1999).
  26. T. Yatsui, H. Jeong, and M. Ohtsu, “Controlling the energy transfer between near-field optically coupled ZnO quantum dots,” Appl. Phys. B 93(1), 199–202 (2008). [CrossRef]
  27. W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007). [CrossRef]
  28. W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010). [CrossRef]
  29. M. Ohtsu, and K. Kobayashi, Optical Near Fields (Springer, Berlin, 2004).
  30. S. Haykin, Communication Systems (John Wiley & Sons, New York, 1983).
  31. M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007). [CrossRef]
  32. K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010). [CrossRef]
  33. J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004). [CrossRef]
  34. H. Imahori, “Giant Multiporphyrin Arrays as Artificial Light-Harvesting Antennas,” J. Phys. Chem. B 108(20), 6130–6143 (2004). [CrossRef]
  35. H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009). [CrossRef]
  36. V. P. Carey and A. J. Shah, “The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems,” J. Electron. Packag. 128(4), 346–352 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited