OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A600–A619

The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass

Min Huang, Fuli Zhao, Ya Cheng, Ningsheng Xu, and Zhizhan Xu  »View Author Affiliations


Optics Express, Vol. 18, Issue S4, pp. A600-A619 (2010)
http://dx.doi.org/10.1364/OE.18.00A600


View Full Text Article

Enhanced HTML    Acrobat PDF (2232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We systematically study the morphological and optical characteristics of the large-area micro/nanostructures produced by femtosecond laser irradiation on GaAs, Si, and brass. The experimental results demonstrate that along with the increase of laser fluence, significant changes in the surface morphology can be observed, and the most prominent phenomenon is the enlarging of the feature size of formed structures. Interestingly, by the fourier analysis of the treated areas, a peculiar phenomenon can be revealed: as laser fluence increases, the spatial frequencies of the structures change following a specific law – the allowed main frequencies are discrete, and appear to be a sequence of 2f, f, f/2, f/4, and f/8 (f is the fundamental frequency corresponding to the near-subwavelength ripples). In our opinion, the new frequency components of f/2, f/4, and f/8 originate in the 2-order, 4-order, and 8-order grating coupling. The law can offer us new insights for the evolving mechanisms of a variety of laser-induced micro/nanostructures in different scales. Furthermore, the optical characteristics of the treated surface are strongly dependent on the morphological characteristics that are mainly determined by laser fluence, such as the feature size of the micro/nanostructures, the topology of the surface morphology, the surface roughness, and the irregular degree of the formed structures. In general, as laser fluence increases in a moderate range, the specular reflectance of the structured surface would be significantly reduced. However, if laser fluence is excessive, the anti-specular-reflection effect would be much weakened. In ideal laser fluence, the micro/nanostructures produced by the near-infrared laser can achieve an ultra-low specular reflectance in the visible and near-infrared spectral region, which exhibits an attracting application prospect in the field of utilizing solar energy.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Materials

History
Original Manuscript: July 8, 2010
Revised Manuscript: September 30, 2010
Manuscript Accepted: October 14, 2010
Published: October 20, 2010

Citation
Min Huang, Fuli Zhao, Ya Cheng, Ningsheng Xu, and Zhizhan Xu, "The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass," Opt. Express 18, A600-A619 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S4-A600


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Perrière, É. Millon, and É. Fogarassy, Recent Advances in Laser Processing of Materials (Elsevier, Amsterdam, 2006).
  2. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998). [CrossRef]
  3. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002). [CrossRef]
  4. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004). [CrossRef]
  5. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000). [CrossRef]
  6. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006). [CrossRef]
  7. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005). [CrossRef]
  8. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008). [CrossRef] [PubMed]
  9. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008). [CrossRef]
  10. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009). [CrossRef] [PubMed]
  11. J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000). [CrossRef]
  12. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: nonclassical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002). [CrossRef]
  13. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003). [CrossRef]
  14. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003). [CrossRef]
  15. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  16. F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1429 (2004).
  17. J. Bonse, A. M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005). [CrossRef]
  18. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005). [CrossRef]
  19. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef] [PubMed]
  20. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circular polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006). [CrossRef]
  21. E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007). [CrossRef]
  22. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007). [CrossRef]
  23. M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007). [CrossRef]
  24. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008). [CrossRef]
  25. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009). [CrossRef]
  26. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009). [CrossRef]
  27. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688 (1965). [CrossRef]
  28. F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser-melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982). [CrossRef]
  29. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure, I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983). [CrossRef]
  30. A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004). [CrossRef]
  31. J. Bonse, M. Munz, and H. Sturm, “Structure Formation on the Surface of Indium Phosphide Irradiated by Femtosecond Laser Pulses,” J. Appl. Phys. 97(1), 013538 (2005). [CrossRef]
  32. J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006). [CrossRef]
  33. T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92(1), 013104 (2008). [CrossRef]
  34. G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan’, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009). [CrossRef]
  35. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  36. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009). [CrossRef]
  37. E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium Surface,” JETP Lett. 90(2), 107–110 (2009). [CrossRef]
  38. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009). [CrossRef]
  39. Y. Han and S. Qu, “Uniform self-organized grating fabricated by single femtosecond laser on dense flint (ZF6) glass,” Appl. Phys., A Mater. Sci. Process. 98(1), 167–170 (2010). [CrossRef]
  40. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited