OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 17–31

Superconducting nanowire single-photon detectors integrated with optical nano-antennae

Xiaolong Hu, Eric A. Dauler, Richard J. Molnar, and Karl K. Berggren  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 17-31 (2011)
http://dx.doi.org/10.1364/OE.19.000017


View Full Text Article

Enhanced HTML    Acrobat PDF (5310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-μm-by-9-μm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.

© 2011 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(040.5570) Detectors : Quantum detectors
(270.5570) Quantum optics : Quantum detectors
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Detectors

History
Original Manuscript: October 11, 2010
Revised Manuscript: December 8, 2010
Manuscript Accepted: December 8, 2010
Published: December 20, 2010

Citation
Xiaolong Hu, Eric A. Dauler, Richard J. Molnar, and Karl K. Berggren, "Superconducting nanowire single-photon detectors integrated with optical nano-antennae," Opt. Express 19, 17-31 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-17


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007). [CrossRef]
  2. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16, 5776–5781 (2008). [CrossRef] [PubMed]
  3. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008). [CrossRef]
  4. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006). [CrossRef] [PubMed]
  5. T. Zhong, X. Hu, F. N. C. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3 1m telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010). [CrossRef] [PubMed]
  6. E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78, 053826 (2008). [CrossRef]
  7. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001). [CrossRef]
  8. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006). [CrossRef] [PubMed]
  9. X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. Herder, F. N. C. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009). [CrossRef] [PubMed]
  10. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, G. Konstantinos, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008). [CrossRef]
  11. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express 17, 23557–23564 (2009). [CrossRef]
  12. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010). [CrossRef] [PubMed]
  13. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006). [CrossRef]
  14. X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009). [CrossRef]
  15. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 867–869 (1998). [CrossRef]
  16. R. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonance optical antennas,” Science 308, 1067–1069 (2005). [CrossRef]
  17. C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef]
  18. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “A Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  19. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008). [CrossRef]
  20. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef]
  21. X. Hu, E. A. Dauler, A. J. Kerman, J. K. W. Yang, J. E. White, C. H. Herder, and K. K. Berggren, “Using surface plasmons to enhance the speed and efficiency of superconducting nanowire single-photon detectors,” 2009 Confernce on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, 2347–2348 (2009).
  22. F. J. García-Vidal, and L. Martín-Moreno, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  23. F. J. García-Vidal, and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  24. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026601 (2004). [CrossRef]
  25. G. Veronis, and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007). [CrossRef] [PubMed]
  26. B. A. Munk, Frequency Selective Surface: Theory and Design (Wiley, 2000). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc. 1998).
  28. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008). [CrossRef] [PubMed]
  29. E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 17, 279–284 (2007). [CrossRef]
  30. X. Hu, F. Marsili, F. Najafi, and K. K. Berggren, “Mid-infrared single-photon detection using superconducting nanowires integrated with nano-antennae,” 2010 Quantum Electronics and Laser Science Conference, QThD5 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited