OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 175–184

Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime

Joan Vila-Comamala, Sergey Gorelick, Elina Färm, Cameron M. Kewish, Ana Diaz, Ray Barrett, Vitaliy A. Guzenko, Mikko Ritala, and Christian David  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 175-184 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



X-ray microscopy based on Fresnel zone plates is a powerful technique for sub-100 nm resolution imaging of biological and inorganic materials. Here, we report on the modeling, fabrication and characterization of zone-doubled Fresnel zone plates for the multi-keV regime (4―12 keV). We demonstrate unprecedented spatial resolution by resolving 15 nm lines and spaces in scanning transmission X-ray microscopy, and focusing diffraction efficiencies of 7.5% at 6.2 keV photon energy. These developments represent a significant step towards 10 nm spatial resolution for hard X-ray energies of up to 12 keV.

© 2010 OSA

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(340.6720) X-ray optics : Synchrotron radiation
(340.7440) X-ray optics : X-ray imaging
(340.7460) X-ray optics : X-ray microscopy
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
X-ray Optics

Original Manuscript: October 21, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 17, 2010
Published: December 22, 2010

Joan Vila-Comamala, Sergey Gorelick, Elina Färm, Cameron M. Kewish, Ana Diaz, Ray Barrett, Vitaliy A. Guzenko, Mikko Ritala, and Christian David, "Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime," Opt. Express 19, 175-184 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Howells, C. Jacobsen, T. Warwick, and A. van den Bos, “Principles and applications of zone plate X-ray microscopes,” in Science of Microscopy, Eds.: P. W. Hawkes and J. C. H. Spence (Springer New York), Chapter 13, 835–926 (2008).
  2. A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010). [CrossRef]
  3. J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995). [CrossRef] [PubMed]
  4. C. Jacobsen and J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5(8Suppl), 650–653 (1998). [CrossRef] [PubMed]
  5. H. Ade and H. Stoll, “Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials,” Nat. Mater. 8(4), 281–290 (2009). [CrossRef] [PubMed]
  6. G. Schneider, “X-ray microscopy: methods and perspectives,” Anal. Bioanal. Chem. 376(5), 558–561 (2003). [CrossRef] [PubMed]
  7. P. Fischer, “Studying nanoscale magnetism and its dynamics with soft X-ray microscopy,” IEEE Trans. Magn. 44(7), 1900–1904 (2008). [CrossRef]
  8. J. Thieme, I. McNulty, S. Vogt, and D. Paterson, “X-ray spectromicroscopy--a tool for environmental sciences,” Environ. Sci. Technol. 41(20), 6885–6889 (2007). [CrossRef] [PubMed]
  9. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 2000), Chapter 9.
  10. J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009). [CrossRef] [PubMed]
  11. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009). [CrossRef] [PubMed]
  12. S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009). [CrossRef] [PubMed]
  13. C. Jacobsen, “Soft x-ray microscopy,” Trends Cell Biol. 9(2), 44–47 (1999). [CrossRef] [PubMed]
  14. Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007). [CrossRef]
  15. Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu, S. T. Jeng, C. C. Yang, J. Shiue, C. H. Chen, Y. Hwu, G. C. Yin, H. M. Lin, J. H. Je, and G. Margaritondo, “Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating,” J. Synchrotron Radiat. 15(2), 170–175 (2008). [CrossRef] [PubMed]
  16. J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M. Denecke, and C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” AIP Conf. Proc. 1221, 80–84 (2010). [CrossRef]
  17. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007). [CrossRef]
  18. D. C. Flanders and N. N. Efremow, “Generation of < 50 nm period gratings using edge defined techniques,” J. Vac. Sci. Technol. B 1(4), 1105–1108 (1983). [CrossRef]
  19. Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron. Dev. 49(3), 436–441 (2002). [CrossRef]
  20. P. Charalambous, and A. Firsova, “Enhancement of zone plate efficiency by evaporation” in X-ray Microscopy IV (Proc. of the 4th Intern. Conf.), Eds.: V. V. Aristov and A. I. Erko (Chernogolovka, Russia) 504–509 (1994).
  21. T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151(8), G489–G492 (2004). [CrossRef]
  22. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill International Editions, 1996), Chapter 2.
  23. J. A. Ferrari, “Fast Hankel transform of order zero,” J. Opt. Soc. Am. A 12(8), 1812–1813 (1995). [CrossRef]
  24. J. A. Ferrari, D. Perciante, and A. Dubra, “Fast Hankel transform of nth order,” J. Opt. Soc. Am. A 16(10), 2581–2582 (1999). [CrossRef]
  25. M. Born, and E. Wolf, Principles of optics, 7th (expanded) Edition (Cambridge University Press, 1999), Chaper 8.
  26. J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28), 285305 (2010). [CrossRef] [PubMed]
  27. DECTRIS Ltd, Neuenhoferstrasse 107, CH-5400 Baden, Switzerland. URL: http://www.dectris.ch
  28. B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107(8), 644–655 (2007). [CrossRef] [PubMed]
  29. M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008). [CrossRef] [PubMed]
  30. A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110(9), 1143–1147 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited