OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 218–223

Beat frequency trimming of dual-polarization fiber grating lasers for multiplexed sensor applications

Yang Zhang, Yan-Nan Tan, Tuan Guo, and Bai-Ou Guan  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 218-223 (2011)
http://dx.doi.org/10.1364/OE.19.000218


View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated a method to trim the beat frequency of dual-polarization fiber grating lasers by side-exposing the laser cavity to UV beam. The UV-side-illumination induces an additional birefringence of the cavity fiber and therefore permanently changes the beat frequency of the laser. The beat frequency can be trimmed up or trimmed down, depending on the UV incident direction relative to the intrinsic polarization axis of the active fiber. A trimming range as much as ~700MHz has been achieved. This method allows us to actively control the beat frequency of dual-polarization fiber grating lasers. A 6-channel RF-frequency division multiplexed polarimetric fiber grating laser array has been demonstrated.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3570) Lasers and laser optics : Lasers, single-mode
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 25, 2010
Revised Manuscript: December 14, 2010
Manuscript Accepted: December 14, 2010
Published: December 22, 2010

Citation
Yang Zhang, Yan-Nan Tan, Tuan Guo, and Bai-Ou Guan, "Beat frequency trimming of dual-polarization fiber grating lasers for multiplexed sensor applications," Opt. Express 19, 218-223 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Hill, B. Hodder, J. D. Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” in Proc. 17th Int. Conf. Optical Fiber Sensors, Bruges, Belgium, 904–907 (2005).
  2. G. H. Ames and J. M. Maguire, “Erbium fiber laser accelerometer,” IEEE Sens. J. 7(4), 557–561 (2007). [CrossRef]
  3. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008). [CrossRef]
  4. G. A. Ball, G. Meltz, and W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18(22), 1976–1978 (1993). [CrossRef] [PubMed]
  5. K. Bohnert, A. Frank, E. Rochat, K. Haroud, and H. Brändle, “Polarimetric fiber laser sensor for hydrostatic pressure,” Appl. Opt. 43(1), 41–48 (2004). [CrossRef] [PubMed]
  6. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er(3+)-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996). [CrossRef] [PubMed]
  7. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999). [CrossRef]
  8. Y. Zhang and B. O. Guan, “High sensitivity distributed Bragg reflector fiber laser displacement sensor,” IEEE Photon. Technol. Lett. 21(5), 280–282 (2009). [CrossRef]
  9. B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009). [CrossRef] [PubMed]
  10. B. O. Guan and S. N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photon. Technol. Lett. 22(4), 230–232 (2010). [CrossRef]
  11. S. B. Foster, A. Tikhomirov, M. Englund, H. Inglis, G. Edvell, and M. Milnes, “A 16 Channel Fibre Laser Sensor Array,” 18th Int. Conf Optical Fiber Sensors, Cancún, Mexico, FA4 (2006)
  12. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994). [CrossRef] [PubMed]
  13. H. Renner, “Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers,” Opt. Express 9(11), 546–560 (2001). [CrossRef] [PubMed]
  14. H. Storøy, B. Sahlgren, and R. Stubbe, “Single polarization fibre DFB laser,” Electron. Lett. 33(1), 56–58 (1997). [CrossRef]
  15. J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998). [CrossRef]
  16. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited