OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 399–408

Long-wave infrared imaging for non-invasive beehive population assessment

Joseph A. Shaw, Paul W. Nugent, Jennifer Johnson, Jerry J. Bromenshenk, Colin B. Henderson, and Scott Debnam  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 399-408 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Long-wave infrared imaging is used for non-invasive assessment of the internal population of honey bee colonies. The radiometrically calibrated camera signal is related to the number of frames that are populated by bees inside each hive. This enables rapid measurement of population without opening the hive, which disturbs the bees and can endanger the queen. The best results are obtained just before sunrise, when there is maximum thermal contrast between the hive and the background. This technique can be important for bee hive monitoring or for applications requiring frequent hive assessment, such as the use of bees for detecting chemicals or explosives.

© 2010 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(110.6820) Imaging systems : Thermal imaging
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Imaging Systems

Original Manuscript: October 8, 2010
Revised Manuscript: December 20, 2010
Manuscript Accepted: December 20, 2010
Published: December 24, 2010

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Joseph A. Shaw, Paul W. Nugent, Jennifer Johnson, Jerry J. Bromenshenk, Colin B. Henderson, and Scott Debnam, "Long-wave infrared imaging for non-invasive beehive population assessment," Opt. Express 19, 399-408 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Bromenshenk, C. B. Henderson, and G. C. Smith, Biological Systems, paper II,” in Alternatives for landmine detection (Rand Corp., 2003), http://www.rand.org/publications/MR/MR1608/MR1608.apps.pdf .
  2. P. J. Rodacy, S. F. A. Bender, J. J. Bromenshenk, C. B. Henderson, and G. Bender, “The training and deployment of honeybees to detect explosives and other agents of harm,” Proc. SPIE 4742, 474–481 (2002). [CrossRef]
  3. L. Blazyte-Cereskiene and V. Buda, “Ability of honey bees to detect and recognize isomers of cresol,” Ekologija 53(3), 16–21 (2007).
  4. J. J. Bromenshenk, C. B. Henderson, R. A. Seccomb, S. D. Rice, R. T. Etter, S. F. A. Bender, P. J. Rodacy, J. A. Shaw, N. L. Seldomridge, L. H. Spangler, and J. J. Wilson, “Can honey bees assist in area reduction and landmine detection?” J. Mine Action 7.3 (2003), http://www.maic.jmu.edu/journal/7.3/focus/bromenshenk/bromenshenk.htm .
  5. J. A. Shaw, N. L. Seldomridge, D. D. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13(15), 5853–5863 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5853 . [CrossRef] [PubMed]
  6. K. S. Repasky, J. A. Shaw, R. S. Scheppele, C. Melton, J. L. Carsten, and L. H. Spangler, “Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines,” Appl. Opt. 45(8), 1839–1843 (2006), doi:. [CrossRef] [PubMed]
  7. D. S. Hoffman, A. R. Nehrir, K. S. Repasky, J. A. Shaw, and J. L. Carlsten, “Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines,” Appl. Opt. 46(15), 3007–3012 (2007), doi:. [CrossRef] [PubMed]
  8. J. J. Bromenshenk, C. B. Henderson, C. H. Wick, M. F. Stanford, A. W. Zulich, R. E. Jabbour, S. V. Deshpande, P. E. McCubbin, R. A. Seccomb, P. M. Welch, T. Williams, D. R. Firth, E. Skowronski, M. M. Lehmann, S. L. Bilimoria, J. Gress, K. W. Wanner, and R. A. Cramer., “Iridovirus and microsporidian linked to honey bee colony decline,” PLoS ONE 5(10), e13181 (2010). [CrossRef] [PubMed]
  9. J. D. Ellis, J. D. Evans, and J. Pettis, “Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States,” J. Apic. Res. 49(1), 134–136 (2010). [CrossRef]
  10. R. M. Johnson, J. D. Evans, G. E. Robinson, and M. R. Berenbaum, “Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera),” Proc. Natl. Acad. Sci. U.S.A. 106(35), 14790–14795 (2009). [CrossRef] [PubMed]
  11. D. van Engelsdorp, J. D. Evans, C. Saegerman, C. Mullin, E. Haubruge, B. K. Nguyen, M. Frazier, J. Frazier, D. Cox-Foster, Y. Chen, R. Underwood, D. R. Tarpy, and J. S. Pettis, “Colony collapse disorder: a descriptive study,” PLoS ONE 4(8), e6481 (2009), doi: . [CrossRef]
  12. J. A. Shaw, P. W. Nugent, N. J. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13(15), 5807–5817 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-15-5807 . [CrossRef] [PubMed]
  13. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express 17(10), 7862–7872 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7862 . [CrossRef] [PubMed]
  14. A. Stabentheiner and S. Schmaranzer, “Thermographic determination of body temperatures in honey bees and hornets: calibration and applications,” Thermology 2(4), 563–572 (1987).
  15. B. Bujok, M. Kleinhenz, S. Fuchs, and J. Tautz, “Hot spots in the bee hive,” Naturwissenschaften 89(7), 299–301 (2002), doi:. [CrossRef] [PubMed]
  16. M. Kleinhenz, B. Bujok, S. Fuchs, and J. Tautz, “Hot bees in empty broodnest cells: heating from within,” J. Exp. Biol. 206(23), 4217–4231 (2003). [CrossRef] [PubMed]
  17. A. Stabentheiner, H. Pressl, T. Papst, N. Hrassnigg, and K. Crailsheim, “Endothermic heat production in honeybee winter clusters,” J. Exp. Biol. 206(2), 353–358 (2003). [CrossRef]
  18. E. K. Es'kov and V. A. Toboev, “Mathematical modeling of the temperature field distribution in insect winter clusters,” Biophysics (Oxf.) 54(1), 85–89 (2009). [CrossRef]
  19. M. Ono, T. Igarashi, E. Ohno, and M. Sasaki, “Unusual thermal defence by a honeybee against mass attack by hornets,” Nature 377(6547), 334–336 (1995). [CrossRef]
  20. G. Kastberger and R. Stachl, “Infrared imaging technology and biological applications,” Behav. Res. Methods Instrum. Comput. 35(3), 429–439 (2003). [CrossRef] [PubMed]
  21. M. Greco, R. Spooner-Hart, and P. Holford, “A new technique for monitoring Trigona carbonaria nest contents, brood, and activity using X-ray computerized tomography,” J. Apic. Res. 44(3), 97–100 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1307 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited