OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 7–16

Registration of OCT fundus images with color fundus photographs based on blood vessel ridges

Ying Li, Giovanni Gregori, Robert W. Knighton, Brandon J. Lujan, and Philip J. Rosenfeld  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 7-16 (2011)
http://dx.doi.org/10.1364/OE.19.000007


View Full Text Article

Enhanced HTML    Acrobat PDF (1888 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes an algorithm to register OCT fundus images (OFIs) with color fundus photographs (CFPs). This makes it possible to correlate retinal features across the different imaging modalities. Blood vessel ridges are taken as features for registration. A specially defined distance, incorporating information of normal direction of blood vessel ridge pixels, is designed to calculate the distance between each pair of pixels to be matched in the pair image. Based on this distance a similarity function between the pair image is defined. Brute force search is used for a coarse registration and then an Iterative Closest Point (ICP) algorithm for a more accurate registration. The registration algorithm was tested on a sample set containing images of both normal eyes and eyes with pathologies. Three transformation models (similarity, affine and quadratic models) were tested on all image pairs respectively. The experimental results showed that the registration algorithm worked well. The average root mean square errors for the affine model are 31 µm (normal) and 59 µm (eyes with disease). The proposed algorithm can be easily adapted to registration for other modality retinal images.

© 2010 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(100.2960) Image processing : Image analysis
(100.4994) Image processing : Pattern recognition, image transforms

ToC Category:
Image Processing

History
Original Manuscript: September 27, 2010
Revised Manuscript: December 16, 2010
Manuscript Accepted: December 16, 2010
Published: December 20, 2010

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Ying Li, Giovanni Gregori, Robert W. Knighton, Brandon J. Lujan, and Philip J. Rosenfeld, "Registration of OCT fundus images with color fundus photographs based on blood vessel ridges," Opt. Express 19, 7-16 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-7


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005). [CrossRef] [PubMed]
  2. M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina 28(2), 298–308 (2008). [CrossRef] [PubMed]
  3. B. J. Lujan, P. J. Rosenfeld, G. Gregori, F. H. Wang, R. W. Knighton, W. J. Feuer, and C. A. Puliafito, “Spectral domain optical coherence tomographic imaging of geographic atrophy,” Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009). [CrossRef] [PubMed]
  4. B. J. Lujan, F. H. Wang, G. Gregori, P. J. Rosenfeld, R. W. Knighton, C. A. Puliafito, R. P. Danis, L. D. Hubbard, R. T. Chang, D. L. Budenz, M. I. Seider, and O. Knight, “Calibration of fundus images using spectral domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S15–S20 (2008). [PubMed]
  5. H. Lester and S. R. Arridge, “A survey of hierarchical non-linear medical image registration,” Pattern Recognit. 32(1), 129–149 (1999). [CrossRef]
  6. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003). [CrossRef]
  7. M. S. Mabrouk, N. H. Solouma, and Y. M. Kadah, “Survey of retinal image segmentation and registration,” Graph. Vis. Image Process. J. 6, 1–11 (2006).
  8. Y. Li, R. W. Knighton, G. Gregori, and R. J. Lujan, “Retinal Image Registration Algorithm Based on Vessel Ridge Detection,” Invest. Ophthalmol. Vis. Sci. 49, 4258 (2008).
  9. H. Narasimha-Iyer, B. Lujan, J. Oakley, S. Meyer, and S. S. Dastmalchi, “Registration of Cirrus HD-OCT Images With Fundus Photographs, Fluorescein Angiographs and Fundus Autofluorescence Images,” Invest. Ophthalmol. Vis. Sci. 49, 1831 (2008).
  10. N. Ritter, R. Owens, J. Cooper, R. H. Eikelboom, and P. P. van Saarloos, “Registration of stereo and temporal images of the retina,” IEEE Trans. Med. Imaging 18(5), 404–418 (1999). [CrossRef] [PubMed]
  11. M. Skokan, A. Skoupy, and J. Jan, “Registration of multimodal images of retina,” in Proceedings of the Second Joint EMBS/BMES Conference, (IEEE, New York, 2002), pp. 1094–1096.
  12. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998). [CrossRef]
  13. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002). [CrossRef]
  14. F. Laliberté, L. Gagnon, and Y. Sheng, “Registration and fusion of retinal images--an evaluation study,” IEEE Trans. Med. Imaging 22(5), 661–673 (2003). [CrossRef] [PubMed]
  15. G. K. Matsopoulos, P. A. Asvestas, N. A. Mouravliansky, and K. K. Delibasis, “Multimodal registration of retinal images using self organizing maps,” IEEE Trans. Med. Imaging 23(12), 1557–1563 (2004). [CrossRef] [PubMed]
  16. C. V. Stewart, C. L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003). [CrossRef] [PubMed]
  17. C. L. Tsai, C. V. Stewart, H. L. Tanenbaum, and B. Roysam, “Model-based method for improving the accuracy and repeatability of estimating vascular bifurcations and crossovers from retinal fundus images,” IEEE Trans. Inf. Technol. Biomed. 8(2), 122–130 (2004). [CrossRef] [PubMed]
  18. F. Zana and J. C. Klein, “A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform,” IEEE Trans. Med. Imaging 18(5), 419–428 (1999). [CrossRef] [PubMed]
  19. Y. Li, N. Hutchings, and J. G. Flanagan, “Automated Detection of the Retinal Blood Vessels and Fovea for Scanning Laser Tomography Images,” Invest. Ophthalmol. Vis. Sci. 48, 2605 (2007).
  20. Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” in Proceedings of SPIE, (2009), pp. 72594K.
  21. P. J. Besl and N. D. Mckay, “A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). [CrossRef]
  22. D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing Images Using the Hausdorff Distance,” IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993). [CrossRef]
  23. S. Rusinkiewicz, and M. Levoy, “Efficient variants of the ICP algorithm,” in Third International Conference on 3-D Digital Imaging and Modeling, (2001), pp. 145–152.
  24. T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006). [CrossRef] [PubMed]
  25. H. Shen, C. V. Stewart, B. Roysam, G. Lin, and H. L. Tanenbaum, “Frame-rate spatial referencing based on invariant indexing and alignment with application to online retinal image registration,” IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 379–384 (2003). [CrossRef]
  26. L. Gagnon, M. Lalonde, M. Beaulieu, and M.-C. Boucher, “Procedure to detect anatomical structures in optical fundus images,” in Proceedings of SPIE Medical Imaging, (2001).
  27. Z. Hu, M. Niemeijer, and D. Abramoff Michael, Lee Kyungmoo, and Mona K.Garvin, “Registration of multimodal images of retina,” in Proceedings of MICCAI, Lecture Notes in Computer Science, (Springer-Verlag, Heidelberg, 2010), pp. 33–40.
  28. J. B. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. Image Anal. 2(1), 1–36 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited