OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 10009–10016

Strongly confined, low-threshold laser modes in organic semiconductor microgoblets

Tobias Grossmann, Sönke Klinkhammer, Mario Hauser, Dominik Floess, Torsten Beck, Christoph Vannahme, Timo Mappes, Uli Lemmer, and Heinz Kalt  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 10009-10016 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate lasing from high-Q, polymeric goblet-type microcavities covered by an organic semiconductor gain layer. We analyze the optical modes in the high-Q cavities using finite element simulations and present a numerical method to determine the cutoff thickness of the gain layer above which the whispering gallery modes are strongly confined in this layer. Fabricated devices show reduced lasing thresholds for increasing gain layer thicknesses, which can be explained by a higher filling factor of the optical modes in the gain layer. Furthermore, reduced lasing threshold is accompanied by a red-shift of the laser emission.

© 2011 OSA

OCIS Codes
(140.7300) Lasers and laser optics : Visible lasers
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 8, 2011
Revised Manuscript: May 4, 2011
Manuscript Accepted: May 4, 2011
Published: May 6, 2011

Tobias Grossmann, Sönke Klinkhammer, Mario Hauser, Dominik Floess, Torsten Beck, Christoph Vannahme, Timo Mappes, Uli Lemmer, and Heinz Kalt, "Strongly confined, low-threshold laser modes in organic semiconductor microgoblets," Opt. Express 19, 10009-10016 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express 17(25), 23265–23271 (2009). [CrossRef]
  2. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Quantum Electron. 12(1), 143–147 (2006). [CrossRef]
  3. E. P. Ostby and K. J. Vahala, “Yb-doped glass microcavity laser operation in water,” Opt. Lett. 34(8), 1153–1155 (2009). [CrossRef] [PubMed]
  4. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004). [CrossRef]
  5. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007). [CrossRef]
  6. P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007). [CrossRef]
  7. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010). [CrossRef]
  8. A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007). [CrossRef] [PubMed]
  9. S. Klinkhammer, T. Grossmann, K. Lull, M. Hauser, C. Vannahme, T. Mappes, H. Kalt, and U. Lemmer, “Diode-pumped organic semiconductor microcone laser,” IEEE Photon. Technol. Lett. 23(8), 489–491 (2011). [CrossRef]
  10. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005). [CrossRef]
  11. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010). [CrossRef]
  12. B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89(19), 191124 (2006). [CrossRef]
  13. A. Tulek, D. Akbulut, and M. Bayindir, “Ultralow threshold laser action from toroidal polymer microcavity,” Appl. Phys. Lett. 94(20), 203302 (2009). [CrossRef]
  14. H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett. 35(4), 459–461 (2010). [CrossRef] [PubMed]
  15. G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Refractometric sensor utilizing a vertically coupled polymeric microdisk resonator incorporating a high refractive index overlay,” Opt. Lett. 34(7), 1048–1050 (2009). [CrossRef] [PubMed]
  16. Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46(10), 1835–1841 (1992). [CrossRef]
  17. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi B 244(10), 3419–3434 (2007). [CrossRef]
  18. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007). [CrossRef]
  19. T. A. Beierlein, B. Ruhstaller, D. J. Gundlach, H. Riel, S. Karg, C. Rost, and W. Rieß, “Investigation of internal processes in organic light-emitting devices using thin sensing layers,” Synth. Met. 138(1-2), 213–221 (2003). [CrossRef]
  20. M. M. Mazumder, G. Chen, R. K. Chang, and J. B. Gillespie, “Wavelength shifts of dye lasing in microdroplets: effect of absorption change,” Opt. Lett. 20(8), 878–880 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited