OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9020–9026

Electrostatic actuation of silicon optomechanical resonators

Suresh Sridaran and Sunil A. Bhave  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9020-9026 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cavity optomechanical systems offer one of the most sensitive methods for detecting mechanical motion using shifts in the optical resonance frequency of the optomechanical resonator. Presently, these systems are used for measuring mechanical thermal noise displacement or mechanical motion actuated by optical forces. Electrostatic capacitive actuation and detection have been shown previously for silicon micro electro mechanical resonators for application in filters and oscillators. Here, we demonstrate monolithic integration of electrostatic capacitive actuation with optical sensing using silicon optomechanical disk resonators and waveguides. The electrically excited mechanical motion is observed as an optical intensity modulation when the input electrical signal is at a frequency of 235MHz corresponding to the radial vibrational mode of the silicon microdisk.

© 2011 OSA

OCIS Codes
(230.4685) Optical devices : Optical microelectromechanical devices
(130.4110) Integrated optics : Modulators
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: March 8, 2011
Revised Manuscript: April 17, 2011
Manuscript Accepted: April 18, 2011
Published: April 25, 2011

Suresh Sridaran and Sunil A. Bhave, "Electrostatic actuation of silicon optomechanical resonators," Opt. Express 19, 9020-9026 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009). [CrossRef]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  3. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  4. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009). [CrossRef]
  5. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  6. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005). [CrossRef] [PubMed]
  7. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  8. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009). [CrossRef] [PubMed]
  9. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006). [CrossRef] [PubMed]
  10. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008). [CrossRef] [PubMed]
  11. J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607–1628 (2004). [CrossRef]
  12. J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, “High-Q UHF micromechanical radial-contour mode disk resonators,” J. Microelectromech. Syst. 14(6), 1298–1310 (2005). [CrossRef]
  13. S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization,” J. Microelectromech. Syst. 13(6), 1054–1062 (2004). [CrossRef]
  14. D. Weinstein and S. A. Bhave, “Internal dielectric transduction in bulk-mode resonators,” J. Microelectromech. Syst. 18(6), 1401–1408 (2009). [CrossRef]
  15. T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18(8), 7872–7885 (2010). [CrossRef] [PubMed]
  16. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010). [CrossRef]
  17. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007). [CrossRef]
  18. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104(12), 123604 (2010). [CrossRef] [PubMed]
  19. O. Arcizet, C. Molinelli, T. Briant, P.-F. Cohadon, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “Experimental optomechanics with silicon micromirrors,” N. J. Phys. 10(12), 125021 (2008). [CrossRef]
  20. S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Disk-array design for suppression of unwanted modes in micromechanical composite-array filters,” in 19th IEEE International Conference on Micro Electro Mechanical Systems (2006), pp. 866–869.
  21. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007). [CrossRef] [PubMed]
  22. S. Pourkamali and F. Ayazi, “SOI-based HF and VHF single-crystal silicon resonators with sub-100 nanometer vertical capacitive gaps,” in 12th International Conference on Solid-State Sensors, Actuators and Microsystems (2003), Vol. 1, pp. 837–840.
  23. L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006). [CrossRef] [PubMed]
  24. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  25. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996). [CrossRef]
  26. V. S. Ilchenko, J. Byrd, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Miniature oscillators based on optical whispering gallery mode resonators,” in IEEE International Frequency Control Symposiumm (2008), pp. 305–308.
  27. K. H. Lee, T. G. McRae, J. Knittel, and W. P. Bowen, “Laser locking and cavity manipulation with a cavity optoelectromechanical system,” IEEE Photon. Technol. Lett. 22(24), 1784–1786 (2010). [CrossRef]
  28. M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited