OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9035–9043

Evidence of surface plasmon resonance in ultrafast laser-induced ripples

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9035-9043 (2011)
http://dx.doi.org/10.1364/OE.19.009035


View Full Text Article

Enhanced HTML    Acrobat PDF (3756 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sensitivity of grating-coupled Surface Plasmon Polaritons (SPPs) on metallic surface has been exploited to investigate the correlation between ripples formation under ultrashort laser exposure and SPPs generation conditions. Systematic examination of coupling of single ultrashort laser pulse on gratings with appropriate periods ranging from 440 nm to 800 nm has been performed. Our approach reveals that a surface plasmon is excited only for an appropriate grating period, the nickel sample exhibits fine ripples pattern, evidencing the plasmonic nature of ripples generation. We propose a systematic investigation supported by a comprehensive study on the obtained modulation of such a coupling efficiency by means of a phenomenological Drude-Lorentz model which captures possible optical properties modification under femtosecond irradiation.

© 2011 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(240.6680) Optics at surfaces : Surface plasmons
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 7, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 6, 2011
Published: April 25, 2011

Citation
F. Garrelie, J.-P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, "Evidence of surface plasmon resonance in ultrafast laser-induced ripples," Opt. Express 19, 9035-9043 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965). [CrossRef]
  2. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973). [CrossRef]
  3. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982). [CrossRef]
  4. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure,” Phys. Rev. B 27(2), 1141–1154 (1983). [CrossRef]
  5. A. E. Siegman, and P. M. Fauchet, “Stimulated woods anomalies on laser illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986). [CrossRef]
  6. A. Borowiec, and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003). [CrossRef]
  7. E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic xurface xtructures on gallium phosphide after irradiation with 150 fs 7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91(11), 111102 (2007). [CrossRef]
  8. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non classical morphology at the bottom of femtosecond laser ablation craters in transient dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002). [CrossRef]
  9. G. Miyaji, and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  10. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  11. J. Wang, and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006). [CrossRef]
  12. J. Bonse, A. Rosenfeld, and J. Krger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009). [CrossRef]
  13. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009). [CrossRef]
  14. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  15. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” in Springer Tracts in Modern Physics, (Springer, 1988), Vol. 111.
  16. A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008). [CrossRef]
  17. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007). [CrossRef]
  18. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010). [CrossRef]
  19. Y. Han, and S. Qu, “The ripples and nanoparticles on silicon irradiated by femtosecond laser,” Chem. Phys. Lett. 495(4–6), 241–244 (2010). [CrossRef]
  20. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007). [CrossRef] [PubMed]
  21. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  22. D. E. Gray, American Institute of Physics Handbook, 3rd. ed. (McGraw Hill, 1972).
  23. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  24. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  25. J. Bonse, A. Rosenfeld, and J. Kruger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. (to be published), doi:10.1016/j.apsusc.2010.11.059. [CrossRef]
  26. Z. Lin, and L. V. Zhigilei, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008). [CrossRef]
  27. P. E. Hopkins, J. M. Klopf, and P. M. Norris, “Influence of interband transitions on electron-phonon coupling measurements in Ni films,” Appl. Opt. 46(11), 2076–2083 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited