OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9050–9055

Polarization independent broadband reflectors based on cross-stacked gratings

Deyin Zhao, Hongjun Yang, Zhenqiang Ma, and Weidong Zhou  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9050-9055 (2011)
http://dx.doi.org/10.1364/OE.19.009050


View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report here a broadband reflector based on a two cross-stacked grating structure. This type of broadband reflector is polarization-independent, with ~100% reflectance over a designed spectral range of 1.4 to 1.6μm. The reflection phase differences between TE and TM polarizations remain almost a constant value of 1.2π over the same high reflection spectral range. The reflector performance tolerance was also investigated by varying the grating structure parameters. Two types of Fabry-Perot cavities can be configured based on two cross-stacked grating structures, for both polarization independent and polarization dependent resonance cavity mode control. All these characteristics associated with the cross-stacked grating reflectors enable a new type of resonant cavity or wave plate design for a large range of photonic applications.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(050.5080) Diffraction and gratings : Phase shift
(140.3948) Lasers and laser optics : Microcavity devices
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 11, 2011
Revised Manuscript: March 28, 2011
Manuscript Accepted: April 18, 2011
Published: April 25, 2011

Citation
Deyin Zhao, Hongjun Yang, Zhenqiang Ma, and Weidong Zhou, "Polarization independent broadband reflectors based on cross-stacked gratings," Opt. Express 19, 9050-9055 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. B 124(6), 1866–1878 (1961). [CrossRef]
  2. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  3. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008). [CrossRef] [PubMed]
  4. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003). [CrossRef] [PubMed]
  5. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004). [CrossRef]
  6. T. Sang, L. Wang, S. Ji, Y. Ji, H. Chen, and Z. Wang, “Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane,” J. Opt. Soc. Am. A 26(3), 559–565 (2009). [CrossRef]
  7. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009). [CrossRef]
  8. M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett. 35(8), 1121–1123 (2010). [CrossRef] [PubMed]
  9. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high indexcontrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007). [CrossRef]
  10. S. Boutami, B. Ben Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43(5), 282–283 (2007). [CrossRef]
  11. R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010). [CrossRef] [PubMed]
  12. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010). [CrossRef]
  13. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004). [CrossRef] [PubMed]
  14. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt. 12(4), 045703 (2010). [CrossRef]
  15. D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE 7756, 775610 (2010). [CrossRef]
  16. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited