OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9066–9073

Precession optomechanics

Xingyu Zhang, Matthew Tomes, and Tal Carmon  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9066-9073 (2011)
http://dx.doi.org/10.1364/OE.19.009066


View Full Text Article

Enhanced HTML    Acrobat PDF (1059 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a light-structure interaction that utilizes circularly polarized light to deform a slightly bent waveguide. The mechanism allows for flipping the direction of deformation upon changing the binary polarization state of light from to + .

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(200.4880) Optics in computing : Optomechanics
(260.5430) Physical optics : Polarization

ToC Category:
Integrated Optics

History
Original Manuscript: February 23, 2011
Revised Manuscript: April 12, 2011
Manuscript Accepted: April 14, 2011
Published: April 25, 2011

Citation
Xingyu Zhang, Matthew Tomes, and Tal Carmon, "Precession optomechanics," Opt. Express 19, 9066-9073 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005). [CrossRef] [PubMed]
  2. H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005). [CrossRef] [PubMed]
  3. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]
  4. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009). [CrossRef] [PubMed]
  5. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009). [CrossRef] [PubMed]
  6. M. Povinelli, S. Johnson, M. Loncar, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” J. Opt. Soc. Am. B 20, 1967–1974 (2003).
  7. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  8. M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007). [CrossRef]
  9. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  10. M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  11. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009). [CrossRef] [PubMed]
  12. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  13. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  14. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  15. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009). [CrossRef]
  16. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009). [CrossRef]
  17. A. Mizrahi and L. Schächter, “Two-slab all-optical spring,” Opt. Lett. 32(6), 692–694 (2007). [CrossRef] [PubMed]
  18. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008). [CrossRef]
  19. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4(4), 236–242 (2010). [CrossRef]
  20. É. Lamothe, G. Lévêque, and O. J. F. Martin, “Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes,” Opt. Express 15(15), 9631–9644 (2007). [CrossRef] [PubMed]
  21. J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17(20), 17818–17828 (2009). [CrossRef] [PubMed]
  22. X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17(23), 20911–20919 (2009). [CrossRef] [PubMed]
  23. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19(3), 2782–2790 (2011). [CrossRef] [PubMed]
  24. L. Zhu, “Frequency dependence of the optical force between two coupled waveguides,” Opt. Lett. 34(18), 2870–2872 (2009). [CrossRef] [PubMed]
  25. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11(2), 321–328 (2011). [CrossRef] [PubMed]
  26. R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]
  27. Being careful, we note that the angular momentum is actually a pseudo-vector.
  28. B. Bokut' and A. Serdyukov, “Conservation of angular momentum of electromagnetic radiation in an optically active medium,” J. Appl. Spectrosc. 12(1), 117–119 (1970). [CrossRef]
  29. T. Ohmi and S. Hori, “Study on an Angular Momentum Conservation of Radiation in a Uniaxial Crystal,” Jpn. J. Appl. Phys. 12(4), 569–576 (1973). [CrossRef]
  30. S. Chang and S. Lee, “Radiation force and torque exerted on a stratified sphere in the circularly polarized TEM01*-mode laser beam,” J. Opt. Soc. Am. B 5(1), 61–66 (1988). [CrossRef]
  31. M. E. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996). [CrossRef] [PubMed]
  32. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004). [CrossRef] [PubMed]
  33. M. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 45–57 (1984).
  34. K. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008). [CrossRef]
  35. L. E. Goodman, Dynamics (Wadsworth Publishing Company, Inc, Belmont, 1961). [PubMed]
  36. R. P. Feynman, The Feynman Lectures on Physics (Addison-Wesley Publishing Company, Reading, 1977).
  37. M. K. Barnoski, ed., Fundamentals of optical fiber communications (Academic Press, New York, 1976).
  38. COMSOL Multiphysics Simulation Software, http://www. comsol. com.
  39. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997). [CrossRef] [PubMed]
  40. M. Cai and K. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26(12), 884–886 (2001). [CrossRef]
  41. T. Carmon, S. Y. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express 15(12), 7677–7681 (2007). [CrossRef] [PubMed]
  42. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007). [CrossRef]
  43. M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17(21), 19160–19165 (2009). [CrossRef]
  44. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  45. B. Garetz, “Angular Doppler effect,” J. Opt. Soc. Am. 71(5), 609–611 (1981). [CrossRef]
  46. I. Bialynicki-Birula and Z. Bialynicka-Birula, “Rotational frequency shift,” Phys. Rev. Lett. 78(13), 2539–2542 (1997). [CrossRef]
  47. A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51(17), 1550–1553 (1983). [CrossRef]
  48. W. Liang, L. Yang, J. K. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006). [CrossRef] [PubMed]
  49. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  50. S. J. Enk and G. Nienhuis, “Spin and orbital angular momentum of photons,” EPL 25(7), 497–501 (1994) (Europhysics Letters). [CrossRef]
  51. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef] [PubMed]
  52. V. S. Ilchenko, M. Mohageg, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Efficient generation of truncated Bessel beams using cylindrical waveguides,” Opt. Express 15(9), 5866–5871 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (688 KB)     
» Media 2: MOV (701 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited