OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9074–9085

Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry

Damien Weidmann, Brian J. Perrett, Neil A. Macleod, and R. Mike Jenkins  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9074-9085 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An integrated optic approach, using hollow waveguides, has been evaluated for a compact, rugged, high efficiency heterodyne optical mixing circuit in the middle infrared. The approach has involved the creation of hollow waveguides and alignment features for a beam combiner component in a glass-ceramic substrate. The performance of the integrated beam combiner was tested as part of a full laser heterodyne spectro-radiometer in which a quantum cascade laser local oscillator emitting at 9.7 µm was mixed with incoherent radiation. The performance has been evaluated with both cryogenically-cooled and peltier-cooled photomixers demonstrating consistent detection limits of two and five times the shot noise limit, respectively. The hollow waveguide mixer has also shown advantages in temporal stability, laser spatial mode cleansing, and reduced sensitivity to optical feedback.

© 2011 OSA

OCIS Codes
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(230.7370) Optical devices : Waveguides
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:

Original Manuscript: March 1, 2011
Revised Manuscript: April 6, 2011
Manuscript Accepted: April 19, 2011
Published: April 25, 2011

Damien Weidmann, Brian J. Perrett, Neil A. Macleod, and R. Mike Jenkins, "Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry," Opt. Express 19, 9074-9085 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005). [CrossRef]
  2. K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002). [CrossRef]
  3. G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006). [CrossRef]
  4. D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000). [CrossRef]
  5. R. T. Menzies, “Laser heterodyne detection techniques”, in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer, Berlin, 1976).
  6. W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994). [CrossRef]
  7. R. T. Menzies and R. K. Seals., “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977). [CrossRef] [PubMed]
  8. K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004). [CrossRef]
  9. D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983). [CrossRef]
  10. D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990). [CrossRef]
  11. G. Sonnabend, D. Wirtz, and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44(33), 7170–7172 (2005). [CrossRef] [PubMed]
  12. D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007). [CrossRef] [PubMed]
  13. D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007). [CrossRef] [PubMed]
  14. G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005). [CrossRef]
  15. D. Stupar, J. Krieg, P. Krötz, G. Sonnabend, M. Sornig, T. F. Giesen, and R. Schieder, “Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy,” Appl. Opt. 47(16), 2993–2997 (2008). [CrossRef] [PubMed]
  16. D. Weidmann and G. Wysocki, “High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser,” Opt. Express 17(1), 248–259 (2009). [CrossRef] [PubMed]
  17. R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25(5), 304–306 (1974). [CrossRef]
  18. D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977). [CrossRef]
  19. R. M. Jenkins, R. W. J. Devereux, and A. F. Blockley, “Hollow Waveguide Integrated Optics: a Novel Approach to 10.6 µm laser radar,” J. Mod. Opt. 45(8), 1613–1627 (1998).
  20. R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000). [CrossRef]
  21. R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008). [CrossRef]
  22. K. D. Laakmann and W. H. Steier, “Waveguides: characteristic modes of hollow rectangular dielectric waveguides,” Appl. Opt. 15(5), 1334–1340 (1976). [CrossRef] [PubMed]
  23. J. F. Holmes and B. J. Rask, “Optimum optical local-oscillator power levels for coherent detection with photodiodes,” Appl. Opt. 34(6), 927–933 (1995). [CrossRef] [PubMed]
  24. R. Schieder and C. Kramer, “Optimization of heterodyne observations using Allan variance measurements,” Astron. Astrophys. 373(2), 746–756 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited