OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9232–9241

Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies

Ying-Ying Diao and Xiang-Yang Liu  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9232-9241 (2011)
http://dx.doi.org/10.1364/OE.19.009232


View Full Text Article

Enhanced HTML    Acrobat PDF (2757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The structural origin of the coloration mechanisms and related extraordinary optical properties of the wing scales of two breeds of Papilio butterflies, namely, Papilio ulysses and Papilio blumei, are explored. The precise ordered biophotonic nanostructures of the wing scales are characterized by scanning electron microscopy (SEM). Despite their structural similarities, the two breeds of Papilio butterflies do not exhibit any analogy in their optical performances. When illuminated with UV-Vis light, P. ulysses gives rise to two reflection peaks: one is from concavities, and the other is from ridges. These two spectral peaks shift their positions under different illumination angles (normal and 45° incident light). In contrast, the spectra for the green scales of P. blumei give one broad reflection peak, and the peak remains the same under normal and 45° incident light. The optical microscopy images indicate that the cap-shaped concavities on P. blumei’s wing scales generate an abnormal bicolor reflection with a strong polarization effect. Both of these two breeds of butterflies take advantage of color mixing strategy: the blue color of P. ulysses is mixed by the colors reflected from concavities and ridges; the green color of P. blumei is produced by the biocolor reflection from concavities. The differences of their coloration mixing mechanisms and optical performances are due to the variations of their nanostructures. The investigation of the color mixing mechanisms of these biologically photonic nanostructures may offer a convenient way for fabricating optical devices based on biomimicry.

© 2011 OSA

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: March 22, 2011
Revised Manuscript: April 19, 2011
Manuscript Accepted: April 20, 2011
Published: April 26, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Ying-Ying Diao and Xiang-Yang Liu, "Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies," Opt. Express 19, 9232-9241 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Banerjee and Z. Dong, “Optical characterization of iridescent wings of Morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm,” Opt. Rev. 14(6), 359–361 (2007). [CrossRef]
  2. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005). [CrossRef] [PubMed]
  3. J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003). [CrossRef] [PubMed]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008). [CrossRef]
  5. S. Berthier, Iridescences: the Physical Colors of Insects (Springer, 2007).
  6. H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010). [CrossRef]
  7. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010). [CrossRef]
  8. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007). [CrossRef]
  9. Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009). [CrossRef]
  10. J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006). [CrossRef] [PubMed]
  11. Y. Liu, R. G. Xie, and X. Y. Liu, “Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field,” Appl. Phys. Lett. 91(6), 063105–063107 (2007). [CrossRef]
  12. R. G. Xie and X. Y. Liu, “Electrically directed on-chip reversible patterning of two-dimensional tunable colloidal structures,” Adv. Funct. Mater. 18(5), 802–809 (2008). [CrossRef]
  13. R. G. Xie and X. Y. Liu, “Controllable epitaxial crystallization and reversible oriented patterning of two-dimensional colloidal crystals,” J. Am. Chem. Soc. 131(13), 4976–4982 (2009). [CrossRef] [PubMed]
  14. K. Q. Zhang and X. Y. Liu, “In situ observation of colloidal monolayer nucleation driven by an alternating electric field,” Nature 429(6993), 739–743 (2004). [CrossRef] [PubMed]
  15. K. Q. Zhang and X. Y. Liu, “Two scenarios for colloidal phase transitions,” Phys. Rev. Lett. 96(10), 105701 (2006). [CrossRef] [PubMed]
  16. K. Q. Zhang and X. Y. Liu, “Controlled formation of colloidal structures by an alternating electric field and its mechanisms,” J. Chem. Phys. 130(18), 184901 (2009). [CrossRef] [PubMed]
  17. P. Pirih, K. Arikawa, and D. G. Stavenga, “An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196(7), 501–517 (2010). [CrossRef] [PubMed]
  18. A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003). [CrossRef] [PubMed]
  19. A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003). [CrossRef]
  20. T. Labhart, F. Baumann, and G. D. Bernard, “Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta,” Cell Tissue Res. 338(3), 391–400 (2009). [CrossRef] [PubMed]
  21. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, Singapore, 2008).
  22. H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996). [CrossRef]
  23. P. Vukusic and J. R. Sambles, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).
  24. P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt. 40(7), 1116–1125 (2001). [CrossRef]
  25. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404(6777), 457–458 (2000). [CrossRef] [PubMed]
  26. H. A. Macleod, Thin-Film Optical Filters (IOP, Bristol, 2001).
  27. A. Vasicek, Optics of Thin Films (Interscience New York, 1960).
  28. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999). [CrossRef]
  29. M. L. M. Lim, M. F. Land, and D. Q. Li, “Sex-specific UV and fluorescence signals in jumping spiders,” Science 315(5811), 481 (2007). [CrossRef] [PubMed]
  30. A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010). [CrossRef] [PubMed]
  31. Y. Takeuchi, K. Arikawa, and M. Kinoshita, “Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus,” J. Exp. Biol. 209(15), 2873–2879 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited