OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9262–9268

Single mode emission and non-stochastic laser system based on disordered point-sized structures: toward a tuneable random laser

R. Bardoux, A. Kaneta, M. Funato, K. Okamoto, Y. Kawakami, A. Kikuchi, and K. Kishino  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9262-9268 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As an advantage, random lasers may be elaborated from a large variety of materials and do not require any cavity oscillators that usually necessitate complicated and expensive fabrication techniques. Since the feedback process of those non-conventional laser systems is provided by light interference in a disordered medium, spectral and temporal uncertainties are usually considered as an intrinsic part of their optical proprieties. We investigated random laser action under two photon absorption experiments through an auto-organized InGaN/GaN quantum-disks ensemble. Thanks to our experimental approach, we evidence random lasing based on a gain medium constituted by point-sized structures. In such context, a stabilised and individual emission mode is observed as for conventional semiconductor lasers. By controlling the emission energy of these nanostructures, a tuneable and stable random laser may be built. Moreover, our findings suggest that disordered medium should play an important role in the conception of low cost quantum dot and up conversion laser systems.

© 2011 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(140.3380) Lasers and laser optics : Laser materials
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 19, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: April 7, 2011
Published: April 27, 2011

R. Bardoux, A. Kaneta, M. Funato, K. Okamoto, Y. Kawakami, A. Kikuchi, and K. Kishino, "Single mode emission and non-stochastic laser system based on disordered point-sized structures: toward a tuneable random laser," Opt. Express 19, 9262-9268 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Lettokhov, “Quantum statistics of multi-mode radiation from an ensemble of atoms,” Sov. Phys. JETP 26, 835 (1968).
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]
  3. W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19(23), 1922–1924 (1994). [CrossRef] [PubMed]
  4. V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, “A powder laser,” Zh. Prikl. Spektrosk 45, 847 (1986).
  5. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Threshold gain behavior of lasing modes in two-dimensional active random media,” Appl. Phys. Lett. 73, 3656 (1998). [CrossRef]
  6. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241 (2004). [CrossRef]
  7. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008). [CrossRef] [PubMed]
  8. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003). [CrossRef]
  9. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002). [CrossRef]
  10. P. Li, Y. C. Wang, and J. Z. Zhang, “All optical fast random number generation,” Opt. Express 18(19), 20360 (2010). [CrossRef] [PubMed]
  11. R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization center formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009). [CrossRef]
  12. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011). [CrossRef] [PubMed]
  13. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459 (1997). [CrossRef]
  14. M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010). [CrossRef]
  15. A. F. Jarjour, A. M. Green, T. J. Parker, R. A. Taylor, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, R. W. Martin, and I. M. Watson, “Two-photon absorption from single InGaN/GaN quantum dots,” Phys. E 32(1-2), 119–122 (2006). [CrossRef]
  16. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2(2), 294 (1985). [CrossRef]
  17. W. Guerin, F. Michaud, and R. Kaiser, “Mechanisms for lasing with cold atoms as the gain medium,” Phys. Rev. Lett. 101(9), 093002 (2008). [CrossRef] [PubMed]
  18. S. Rodt, R. Heitz, A. Schliwa, R. L. Sellin, F. Guffarth, and D. Bimberg, “Repulsive exciton-exciton interaction in quantum dots,” Phys. Rev. B 68(3), 035331 (2003). [CrossRef]
  19. J. Andreasen and H. Cao, Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82, 063825 (2010). [CrossRef]
  20. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010). [CrossRef]
  21. H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003 [CrossRef]
  22. E. Ejder, “Refractive index of GaN,” Phys. Status Solidi (a) .6(2), 445–448 (1971). [CrossRef]
  23. J. P. Berenger and J. Comput, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  24. K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007). [CrossRef] [PubMed]
  25. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007). [CrossRef] [PubMed]
  26. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011). [CrossRef]
  27. W. Koechner, Solid state laser engineering. Springer Series in Optical Sciences (2003).
  28. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” J. Cryst. Growth 189-190 (1-2), 138–141 (1998). [CrossRef]
  29. S. Diederik, “Wiersma. Random quantum networks,” Sciences (New York) 327(5971), 1333–1334 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited