OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9371–9377

High-Q/V air-mode photonic crystal cavities at microwave frequencies

Yinan Zhang, Irfan Bulu, Wai-Ming Tam, Ben Levitt, Jagdish Shah, Tancredi Botto, and Marko Loncar  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9371-9377 (2011)
http://dx.doi.org/10.1364/OE.19.009371


View Full Text Article

Enhanced HTML    Acrobat PDF (1038 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results for a photonic microwave resonator designed and fabricated at 17.4GHz with a record high Quality factor (Q = 26,400) at room temperature over a mode volume smaller than one cubic wavelength. The cavity is uniquely designed to have its electric field concentrated in air, which allows for efficient coupling to free space and facilitates interactions with gaseous atomic systems and fluids.

© 2011 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(350.4010) Other areas of optics : Microwaves
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 9, 2011
Revised Manuscript: April 22, 2011
Manuscript Accepted: April 25, 2011
Published: April 28, 2011

Citation
Yinan Zhang, Irfan Bulu, Wai-Ming Tam, Ben Levitt, Jagdish Shah, Tancredi Botto, and Marko Loncar, "High-Q/V air-mode photonic crystal cavities at microwave frequencies," Opt. Express 19, 9371-9377 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  2. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991). [CrossRef] [PubMed]
  3. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72(19), 2376–2378 (1998). [CrossRef]
  4. M. A. Shapiro, W. J. Brown, I. Mastovsky, J. R. Sirigiri, and R. J. Temkin, “17 GHz photonic bandgap cavity with improved input coupling,” Phys. Rev. Spec Top. Accelerators Beams 4, 042201 (2001).
  5. E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, “Demonstration of a 17-GHz, high-gradient accelerator with a photonic-band-gap structure,” Phys. Rev. Lett. 95(7), 074801 (2005). [CrossRef] [PubMed]
  6. E. Di Gennaro, S. Savo, A. Andreone, V. Galdi, G. Castaldi, V. Pierro, and M. R. Masullo, “Mode confinement in photonic quasicrystal point-defect cavities for particle accelerators,” Appl. Phys. Lett. 93(16), 164102 (2008). [CrossRef]
  7. C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, “Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region,” Phys. Rev. B 61(16), 10762–10767 (2000). [CrossRef]
  8. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73(3), 565–582 (2001). [CrossRef]
  9. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004). [CrossRef] [PubMed]
  10. A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, and M. Cuhaci, “Recent advances in dielectric-resonator antenna technology,” IEEE Antennas Propag. Mag. 40(3), 35–48 (1998). [CrossRef]
  11. M. J. R. Previte and C. D. Geddes, “Fluorescence microscopy in a microwave cavity,” Opt. Express 15(18), 11640–11649 (2007). [CrossRef] [PubMed]
  12. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009). [CrossRef] [PubMed]
  13. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997). [CrossRef]
  14. A. R Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008). [CrossRef]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  16. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010). [CrossRef]
  17. Rsoft Inc, Rsoft Fullwave v6.0.2, http://www.rsoftdesign.com .
  18. Y. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16(22), 17400–17409 (2008). [CrossRef] [PubMed]
  19. P. Lalanne and J. P. Hugonin, ““Bloch-wave engineering for high-Q, small-V microcavities,” IEEE. J. Quantum Electron. 39(11), 1430–1438 (2003). [CrossRef]
  20. J. D. Joannopoulos and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  21. S. Fan, “Photonic crystal theory: temporal coupled-mode formalism,” in Optical Fiber Communications V A: Components and Subsystems, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Elsevier 2008), Vol. 1, pp. 431–454.
  22. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009). [CrossRef]
  23. Lj. Babić and M. J. A. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18(25), 26569–26582 (2010). [CrossRef] [PubMed]
  24. U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318–3327 (1986). [CrossRef]
  25. L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76(4), 041102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited