OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9523–9528

Hybrid microspheres for nonlinear Kerr switching devices

Ilya Razdolskiy, Simone Berneschi, Gualtiero Nunzi Conti, Stefano Pelli, Tatyana V. Murzina, Giancarlo C. Righini, and Silvia Soria  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9523-9528 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electronic Kerr effect in a polyfluorene derivative is used to reversibly switch near infrared probe beam resonantly coupled to a hybrid polymer-silica microspherical resonator. NIR pumping at 780 nm in pulsed laser regime is used for non-linear switching of the WGM resonances that shift as much as 2 GHz for 50 mW of average pump power, compared to a shift of 250 MHz for the same average pump power at CW regime. The absence of temporal drift and the magnitude of this shift confirm the Kerr nature of the switching, ruling out thermooptical effects.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.3270) Nonlinear optics : Kerr effect
(230.5750) Optical devices : Resonators

ToC Category:
Nonlinear Optics

Original Manuscript: February 8, 2011
Revised Manuscript: March 18, 2011
Manuscript Accepted: March 18, 2011
Published: May 2, 2011

Ilya Razdolskiy, Simone Berneschi, Gualtiero Nunzi Conti, Stefano Pelli, Tatyana V. Murzina, Giancarlo C. Righini, and Silvia Soria, "Hybrid microspheres for nonlinear Kerr switching devices," Opt. Express 19, 9523-9528 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010). [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  4. W. P. Acker, D. H. Leach, and R. K. Chang, “Third-order optical sum-frequency generation in micrometer-sized liquid droplets,” Opt. Lett. 14(8), 402–404 (1989). [CrossRef] [PubMed]
  5. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third harmonic generation,” Nat. Phys. 3(6), 430–435 (2007). [CrossRef]
  6. G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering gallery mode phase matching for surface second order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008). [CrossRef]
  7. K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-modulation scattering intensity from a silica microsphere coated with a sol-gel film doped with J-aggregates,” Opt. Rev. 13(4), 292–296 (2006). [CrossRef]
  8. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and non linear properties of optical whispering gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989). [CrossRef]
  9. M. Haraguchi, M. Fukui, Y. Tamaki, and T. Okamoto, “Optical switching due to whispering gallery modes in dielectric microspheres coated by a Kerr material,” J. Microsc. 210(3), 229–233 (2003). [CrossRef] [PubMed]
  10. H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14(8), 1118–1120 (2002). [CrossRef]
  11. J. Topolancik and F. Vollmer, “All optical switching in the near infrared with bacteriorhodopsin-coated Microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006). [CrossRef]
  12. S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switch with bacteriorhodopsin protein coated Microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010). [CrossRef]
  13. V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering gallery modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006) (and references therein). [CrossRef]
  14. K. Yamaguchi, M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Nonlinear trimer resonators for compact ultra-fast switching,” Opt. Express 17(25), 23204–23212 (2009). [CrossRef]
  15. P. N. Prasad and J. Williams, Introduction to Nonlinear Effects in Molecules and Polymers (Wiley, 1991).
  16. M. A. Bader, G. Marowsky, A. Bahtiar, K. Koynov, C. Bubeck, H. Tillmann, H.-H. Hörhold, and S. Pereira, “Poly(p-phenylenevinylene) derivatives: new promising materials for non-linear all optical waveguide switching,” J. Opt. Soc. Am. B 19(9), 2250–2262 (2002). [CrossRef]
  17. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010). [CrossRef] [PubMed]
  18. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998). [CrossRef]
  19. U. Scherf and E. J. W. List, “Semiconducting polyfluorenes—towards reliable structure–property relationships,” Adv. Mater. (Deerfield Beach Fla.) 14(7), 477–487 (2002). [CrossRef]
  20. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30(4), 427–429 (2005). [CrossRef] [PubMed]
  21. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010). [CrossRef]
  22. F. Qin, Y. Liu, and Z.-Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010). [CrossRef]
  23. L. S. Chinelatto, J. Del Barrio, M. Pinol, L. Oriol, M. A. Matranga, M. De Santo, and R. Barberi, “Oligofluorene blue emitters for cholesteric liquid crystal lasers,” J. Photochem. Photobio., A 210(2-3), 130–139 (2010). [CrossRef]
  24. S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009). [CrossRef] [PubMed]
  25. M. Sheik-bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989). [CrossRef] [PubMed]
  26. F. Yu. Sychev, I. E. Razdolski, T. V. Murzina, O. A. Aktsipetrov, T. Trifonov, and S. Cheylan, “Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals,” Appl. Phys. Lett. 95(16), 163301 (2009). [CrossRef]
  27. S. Lettieri and P. Maddalena, “Nonresonant Kerr effect in microporous silicon: nonbulk dispersive behavior of below band gap χ(3),” J. Appl. Phys. 91(9), 5564 (2002). [CrossRef]
  28. T. Le, A. Savchenkov, N. Yu, L. Maleki, and W. H. Steier, “Optical resonant sensors: a method to reduce the effect of thermal drift,” Appl. Opt. 48(3), 458–463 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited