OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9551–9561

Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity

Johannes Weitenberg, Peter Rußbüldt, Tino Eidam, and Ioachim Pupeza  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9551-9561 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a high-finesse femtosecond enhancement cavity with an on-axis obstacle. By inserting a wire with a width of 5% of the fundamental mode diameter, the finesse of F = 3400 is only slightly reduced to F = 3000. The low loss is due to the degeneracy of transverse modes, which allows for exciting a circulating field distribution avoiding the obstacle. We call this condition quasi-imaging. The concept could be used for output coupling of intracavity-generated higher-order harmonics through an on-axis opening in one of the cavity mirrors.

© 2011 OSA

OCIS Codes
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(190.4160) Nonlinear optics : Multiharmonic generation
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 4, 2011
Revised Manuscript: April 27, 2011
Manuscript Accepted: April 27, 2011
Published: May 2, 2011

Johannes Weitenberg, Peter Rußbüldt, Tino Eidam, and Ioachim Pupeza, "Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity," Opt. Express 19, 9551-9561 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010). [CrossRef] [PubMed]
  2. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008). [CrossRef] [PubMed]
  3. I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, A. Ozawa, E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, Th. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I, 79141I-13 (2011). [CrossRef]
  4. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005). [CrossRef] [PubMed]
  5. Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005). [CrossRef] [PubMed]
  6. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008). [CrossRef] [PubMed]
  7. Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011). [CrossRef] [PubMed]
  8. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14(18), 8189–8197 (2006). [CrossRef] [PubMed]
  9. W. P. Putnam, G. Abram, E. L. Falcão-Filho, J. R. Birge, and F. X. Kärtner, “High-intensity Bessel-Gauss beam enhancement cavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMD1 (2010).
  10. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008). [CrossRef] [PubMed]
  11. S. Gigan, L. Lopez, N. Treps, A. Maître, and C. Fabre, “Image transmission through a stable paraxial cavity,” Phys. Rev. A 72(2), 023804 (2005). [CrossRef]
  12. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14(13), 6069–6074 (2006). [CrossRef] [PubMed]
  13. J. Weitenberg, P. Rußbüldt, I. Pupeza, Th. Udem, H.-D. Hoffmann, and R. Poprawe, “Geometrical on-axis access to high-finesse resonators by quasi-imaging,” (manuscript in preparation).
  14. T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008). [CrossRef]
  15. Th. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980). [CrossRef]
  16. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18(10), 9739–9746 (2010). [CrossRef] [PubMed]
  17. J. A. Arnaud, “Degenerate optical cavities,” Appl. Opt. 8(1), 189–195 (1969). [CrossRef] [PubMed]
  18. D. Esser, W. Bröring, J. Weitenberg, and H.-D. Hoffmann, “Laser-manufactured mirrors for geometrical output coupling of intracavity-generated high harmonics,” (manuscript in preparation).
  19. F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, “High-energy scaling of Compton scattering light sources,” Phys. Rev. ST Accel. Beams 8(10), 100702 (2005). [CrossRef]
  20. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited