OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9562–9574

Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides

Seung-Yeol Lee, Junghyun Park, Minsu Kang, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9562-9574 (2011)
http://dx.doi.org/10.1364/OE.19.009562


View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel interconnection structure that is capable of transferring surface plasmon energy between two distanced metal-dielectric-metal waveguides is proposed. A numerical analysis indicates that the power transferring efficiency of the proposed structure approaches 88.5% for one millimeter of interconnection length. The main mechanism of the proposed interconnector is governed by Fabry-Pérot resonance and a multi-mode interference effect in the junction layers. A physical analysis based on the mechanism for designing an optimized structure is also provided, which could be used to modify the proposed structure.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(200.4650) Optics in computing : Optical interconnects
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: March 4, 2011
Revised Manuscript: April 28, 2011
Manuscript Accepted: April 28, 2011
Published: May 2, 2011

Citation
Seung-Yeol Lee, Junghyun Park, Minsu Kang, and Byoungho Lee, "Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides," Opt. Express 19, 9562-9574 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9562


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 295–306 (2010). [CrossRef]
  2. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010). [CrossRef]
  5. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15(8), 4474–4484 (2007). [CrossRef] [PubMed]
  6. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]
  7. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007). [CrossRef]
  8. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008). [CrossRef]
  9. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010). [CrossRef]
  10. S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett. 97(13), 133113 (2010). [CrossRef]
  11. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008). [CrossRef] [PubMed]
  12. Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7554 (2009). [CrossRef]
  13. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express 16(21), 16903–16915 (2008). [CrossRef] [PubMed]
  14. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009). [CrossRef]
  15. K. F. Macdonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 14, 55–58 (2008).
  16. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010). [CrossRef] [PubMed]
  17. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  18. Z. Wu, R. L. Nelson, J. W. Haus, and Q. Zhan, “Plasmonic electro-optic modulator design using a resonant metal grating,” Opt. Lett. 33(6), 551–553 (2008). [CrossRef] [PubMed]
  19. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  20. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express 12(22), 5481–5486 (2004). [CrossRef] [PubMed]
  21. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010). [CrossRef] [PubMed]
  22. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  23. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009). [CrossRef]
  24. Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett. 35(19), 3153–3155 (2010). [CrossRef] [PubMed]
  25. M. Kang, J. Park, I.-M. Lee, and B. Lee, “Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides,” Opt. Express 17(2), 676–687 (2009). [CrossRef] [PubMed]
  26. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007). [CrossRef] [PubMed]
  27. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25(15), 1092–1094 (2000). [CrossRef]
  28. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007). [CrossRef]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  30. H. Kim, J. Hahn, and B. Lee, “Focusing properties of surface plasmon polariton floating dielectric lenses,” Opt. Express 16(5), 3049–3057 (2008). [CrossRef] [PubMed]
  31. Z. Ahmed, “Schrodinger transmission through one-dimensional complex potential,” Phys. Rev. A 64(4), 042716 (2001). [CrossRef]
  32. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  33. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  34. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids 2nd ed. (Academic Press, 1998), Chap. 11, 356.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3519 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited