OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9708–9713

Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle

Yunfeng Jiang, Kaikai Huang, and Xuanhui Lu  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9708-9713 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The radiation force of highly focused Lorentz-Gauss beams (LG beam) on a dielectric sphere in the Rayleigh scattering regime is theoretically studied. The numerical results show that the Lorentz-Gauss beam can be used to trap particles with the refractive index larger than that of the ambient. The radiation force distribution has been studied under different beam widths of the Lorentz part. The trapping stability under different conditions is also analyzed.

© 2011 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: April 14, 2011
Manuscript Accepted: April 28, 2011
Published: May 3, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Yunfeng Jiang, Kaikai Huang, and Xuanhui Lu, "Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle," Opt. Express 19, 9708-9713 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. E. Gawhary and S. Severini, “Lorentz beams and symmetry properties in paraxial optics,” J. Opt. A, Pure Appl. Opt. 8(5), 409–414 (2006). [CrossRef]
  2. M. A. Bandres and J. C. Gutiérrez-Vega, “Cartesian beams,” Opt. Lett. 32(23), 3459–3461 (2007). [CrossRef] [PubMed]
  3. W. P. Dumke, “Angular beam divergence in double-heterojunction lasers with very thin active regions,” IEEE J. Quantum Electron. 11(7), 400–402 (1975). [CrossRef]
  4. A. Naqwi and F. Durst, “Focusing of diode laser beams: a simple mathematical model,” Appl. Opt. 29(12), 1780–1785 (1990). [CrossRef] [PubMed]
  5. A. Torre, W A B. Evans, O. E. Gawhary, and S. Severini, “Relativistic Hermite polynomials and Lorentz beams,” J. Opt. A, Pure Appl. Opt. 10(11), 115007 (2008). [CrossRef]
  6. G. Q. Zhou, “Focal shift of focused truncated Lorentz-Gauss beam,” J. Opt. Soc. Am. A 25(10), 2594–2599 (2008). [CrossRef]
  7. G. Q. Zhou, “Nonparaxial propagation of a Lorentz-Gauss beam,” J. Opt. Soc. Am. B 26(1), 141–147 (2009). [CrossRef]
  8. G. Q. Zhou, “Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system,” Opt. Express 18(5), 4637–4643 (2010). [CrossRef] [PubMed]
  9. G. Q. Zhou and X. X. Chu, “Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere,” Opt. Express 18(2), 726–731 (2010). [CrossRef] [PubMed]
  10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  11. A. A. Ambardekar and Y. Q. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30(14), 1797–1799 (2005). [CrossRef] [PubMed]
  12. P. Zemánek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146(1-6), 119–123 (1998). [CrossRef]
  13. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990). [CrossRef] [PubMed]
  14. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage straight phi29 portal motor can package DNA against a large internal force,” Nature 413(6857), 748–752 (2001). [CrossRef] [PubMed]
  15. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97(5), 058301 (2006). [CrossRef] [PubMed]
  16. C. Day, “Optical trap resolves the stepwise transfer of genetic information from DNA to RNA,” Phys. Today 59(1), 26–27 (2006). [CrossRef]
  17. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008). [CrossRef] [PubMed]
  18. C. L. Zhao, L. G. Wang, and X. H. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007). [CrossRef]
  19. C. L. Zhao, L. G. Wang, and X. H. Lu, “Radiation forces of highly focused Bessel-Gaussian beams on a dielectric sphere,” Optik (Stuttg.) 119(10), 477–480 (2008). [CrossRef]
  20. Q. W. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A, Pure Appl. Opt. 5(3), 229–232 (2003). [CrossRef]
  21. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007). [CrossRef] [PubMed]
  22. C. L. Zhao, Y. J. Cai, X. H. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17(3), 1753–1765 (2009). [CrossRef] [PubMed]
  23. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  24. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996). [CrossRef]
  25. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008). [CrossRef]
  26. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited