OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9814–9819

Waveguide mode filters fabricated using laser-induced forward transfer

K. S. Kaur, A. Z. Subramanian, Y. J. Ying, D. P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C. L. Sones, S. Mailis, and R. W. Eason  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9814-9819 (2011)
http://dx.doi.org/10.1364/OE.19.009814


View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Titanium (Ti)-in-diffused lithium niobate waveguide mode filters fabricated using laser-induced forward transfer followed by thermal diffusion are presented. The mode control was achieved by adjusting the separation between adjacent Ti segments thus varying the average value of the refractive index along the length of the in-diffused channel waveguides. The fabrication details, loss measurements and near-field optical characterization of the mode filters are presented. Modeling results regarding the device performance are also discussed.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 11, 2011
Revised Manuscript: March 10, 2011
Manuscript Accepted: March 10, 2011
Published: May 5, 2011

Citation
K. S. Kaur, A. Z. Subramanian, Y. J. Ying, D. P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C. L. Sones, S. Mailis, and R. W. Eason, "Waveguide mode filters fabricated using laser-induced forward transfer," Opt. Express 19, 9814-9819 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985). [CrossRef]
  2. R. C. Alferness and L. L. Buhl, “Electro-optic waveguide TE–TM mode converter with low drive voltage,” Opt. Lett. 5(11), 473–475 (1980). [CrossRef] [PubMed]
  3. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkötter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides,” Opt. Lett. 24(13), 896–898 (1999). [CrossRef]
  4. C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010). [CrossRef]
  5. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986). [CrossRef]
  6. K. D. Kyrkis, A. A. Andreadaki, D. G. Papazoglou, and I. Zergioti, Recent Advances in Laser Processing of Materials, J. Perrière, E. Millon, and E. Fogarassy, eds. (Elsevier, 2006), p. 213.
  7. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006). [CrossRef]
  8. S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Etching and printing of diffractive optical microstructures by a femtosecond excimer laser,” Appl. Opt. 38(11), 2301–2308 (1999). [CrossRef]
  9. A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999). [CrossRef]
  10. K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009). [CrossRef]
  11. I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005). [CrossRef]
  12. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993). [CrossRef]
  13. D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, and P. A. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17(20), 17868–17873 (2009). [CrossRef] [PubMed]
  14. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited