OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9968–9975

High speed terahertz modulation from metamaterials with embedded high electron mobility transistors

David Shrekenhamer, Saroj Rout, Andrew C. Strikwerda, Chris Bingham, Richard D. Averitt, Sameer Sonkusale, and Willie J. Padilla  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9968-9975 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a computational and experimental study of a novel terahertz (THz) device resulting from hybridization of metamaterials with pseudomorphic high electron mobility transistors (HEMTs), fabricated in a commercial gallium arsenide (GaAs) process. Monolithic integration of transistors into each unit cell permits modulation at the metamaterial resonant frequency of 0.46 THz. Characterization is performed using a THz time-domain spectrometer (THz-TDS) and we demonstrate switching values over 30%, and THz modulation at frequencies up to 10 megahertz (MHz). Our results demonstrate the viability of incorporating metamaterials into mature semiconductor technologies and establish a new path toward achieving electrically tunable THz devices.

© 2011 OSA

OCIS Codes
(230.4110) Optical devices : Modulators
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: March 4, 2011
Revised Manuscript: April 27, 2011
Manuscript Accepted: April 29, 2011
Published: May 6, 2011

David Shrekenhamer, Saroj Rout, Andrew C. Strikwerda, Chris Bingham, Richard D. Averitt, Sameer Sonkusale, and Willie J. Padilla, "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors," Opt. Express 19, 9968-9975 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  2. D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [PubMed]
  6. W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
  7. H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006). [PubMed]
  8. H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
  9. I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
  10. D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).
  11. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
  12. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
  13. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009). [PubMed]
  14. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
  15. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008). [PubMed]
  16. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
  17. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).
  18. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
  19. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).
  20. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993). [PubMed]
  21. M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).
  22. V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).
  23. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
  24. T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).
  25. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
  26. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
  27. P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
  28. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
  29. S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35, 1359–1362 (1975).
  30. E. Batke and D. Heitmann, “Rapid-Scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).
  31. R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited