OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10073–10087

Investigation of the wave behaviors inside a step-modulated subwavelength metal slit

Chao Li, Yun-Song Zhou, Huai-Yu Wang, and Fu-He Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10073-10087 (2011)
http://dx.doi.org/10.1364/OE.19.010073


View Full Text Article

Enhanced HTML    Acrobat PDF (2630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we applied the modal expansion method (MEM) to investigate the wave behaviors inside a step-modulated subwavelength metal slit. The physical mechanism of the surface plasmon polariton (SPP) transmission is investigated in detail for slit structures with either dielectric or geometric modulation. The applicability of the effective index method is discussed. Moreover, as a special case of the geometric modulation, the evanescent-wave assisted transmission is demonstrated in a thin-modulated slit. We emphasize that a complete set is necessary in order to expand the wave functions in these kinds of structures. All the calculated results by the MEM are well retrieved by the finite-difference time-domain calculation.

© 2011 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.5825) Scattering : Scattering theory

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 23, 2011
Revised Manuscript: April 9, 2011
Manuscript Accepted: April 22, 2011
Published: May 9, 2011

Citation
Chao Li, Yun-Song Zhou, Huai-Yu Wang, and Fu-He Wang, "Investigation of the wave behaviors inside a step-modulated subwavelength metal slit," Opt. Express 19, 10073-10087 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10073


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003). [CrossRef]
  2. J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999). [CrossRef]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  4. F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001). [CrossRef]
  5. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  6. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007). [CrossRef]
  7. B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007). [CrossRef]
  8. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express 15, 183–197 (2007). [CrossRef] [PubMed]
  9. C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010). [CrossRef]
  10. E. Feigenbaum and M. Orenstein, “Modeling of complementary (void) plasmon waveguiding,” J. Lightwave Technol. 25, 2547–2562 (2007). [CrossRef]
  11. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  12. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005). [CrossRef] [PubMed]
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004). [CrossRef]
  14. Q. Zhang, X. Huang, X. Lin, J. Tao, and X. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009). [CrossRef]
  15. Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010). [CrossRef]
  16. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006). [CrossRef]
  17. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009). [CrossRef] [PubMed]
  18. A. Houseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008). [CrossRef]
  19. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef] [PubMed]
  20. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008). [CrossRef] [PubMed]
  21. X. S. Lin and X. G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009). [CrossRef]
  22. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009). [CrossRef]
  23. R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1966).
  24. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  25. T. Itoh, Numerical Techniques for Microwave and Millimeter Wave Passive Structures (Wiley, 1989).
  26. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001). [CrossRef] [PubMed]
  27. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  28. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  29. The commercially available software developed by Rsoft Design Group http://www.rsoftdesign.com is used for the numerical simulations.
  30. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981). [CrossRef]
  31. L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981). [CrossRef]
  32. L. C. Botten and R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479–1488 (1985). [CrossRef]
  33. Since the slit is an infinitely long one, the wave source has to be located in Layer 1. This can be easily done in FDTD by setting the coordinates of the source to y = H(0). A “slab mode” (a normal mode of a slab waveguide with characteristics matching the input waveguide, a feature provieded by the RSOFT Fullwave software) is used to excite the SPP mode. However, for the amplitude of the source in FDTD, it should be adjusted to the same value of the normalized SPP mode in Layer 1 as pointed out later. The grid size of the simulation is set as 2.5 nm × 2.5 nm.
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  35. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  36. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  37. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, 1955).
  38. L. C. Botten, M. S. Craig, and R. C. McPhedran, “Complex zeros of analytic functions,” Computer Phys. Commun. 29, 245–259 (1983). [CrossRef]
  39. P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978). [CrossRef]
  40. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992) [CrossRef] [PubMed]
  41. W. M. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31, 4453–4458 (1992). [CrossRef] [PubMed]
  42. W. Stork, N. Sreibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991). [CrossRef] [PubMed]
  43. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited