OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10138–10152

Terahertz scattering by subwavelength cylindrical arrays

Gretel M. Png, Christophe Fumeaux, Mark R. Stringer, Robert E. Miles, and Derek Abbott  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10138-10152 (2011)
http://dx.doi.org/10.1364/OE.19.010138


View Full Text Article

Enhanced HTML    Acrobat PDF (1750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of a full-wave electromagnetic field simulator to verify terahertz (THz) transmission-mode spectroscopic measurements of periodic arrays containing subwavelength cylindrical scatterers. Many existing THz scattering studies utilize analytical solutions, which were developed for a single scatterer. For multiple scatterers, a scaling factor equal to the number of scatterers is applied, accounting for interference between far-field radiative contributions from those scatterers but not their near-field mutual coupling. Consequently, analytical solutions do not accurately verify measurements. Conversely, results from the full-wave electromagnetic field simulator elucidate our measurements well, and provide an important insight into how the scattering behavior of cylindrical scatterers is influenced by test conditions.

© 2011 OSA

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(290.5820) Scattering : Scattering measurements
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: March 16, 2011
Revised Manuscript: April 25, 2011
Manuscript Accepted: April 26, 2011
Published: May 9, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Gretel M. Png, Christophe Fumeaux, Mark R. Stringer, Robert E. Miles, and Derek Abbott, "Terahertz scattering by subwavelength cylindrical arrays," Opt. Express 19, 10138-10152 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  2. L. M. Zurk, B. Orlowski, D. P. Winebrenner, E. I. Thorsos, M. R. Leahy-Hoppa, and L. M. Hayden, “Terahertz scattering from granular material,” J. Opt. Soc. Am. B 24, 2238–2243 (2007). [CrossRef]
  3. A. Bandyopadhyay, A. Sengupta, R. B. Barat, D. E. Gary, J. F. Federici, M. Chen, and D. B. Tanner, “Effects of scattering on THz spectra of granular solids,” Int. J. Infrared Millim. Waves 28, 969–978 (2007). [CrossRef]
  4. Y.-C. Shen, P. F. Taday, and M. Pepper, “Elimination of scattering effects in spectral measurement of granulated materials using terahertz pulsed spectroscopy,” Appl. Phys. Lett. 92, 051103 (2008). [CrossRef]
  5. M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett. 92, 021107 (2008). [CrossRef]
  6. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85, 519–521 (2004). [CrossRef]
  7. M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, J. R. Fletcher, G. P. Swift, and J. M. Chamberlain, “Propagation of electromagnetic waves through a system of randomly placed cylinders: The partial scattering wave resonance,” J. Mod. Opt. 53, 2089–2097 (2006). [CrossRef]
  8. J. R. Fletcher, G. P. Swift, D. C. Dai, J. A. Levitt, and J. M. Chamberlain, “Propagation of terahertz radiation through random structures: An alternative theoretical approach and experimental validation,” J. Appl. Phys. 101, 013102 (2007). [CrossRef]
  9. Y. L. Hor, J. F. Federici, and R. L. Wample, “Nondestructive evaluation of cork enclosures using terahertz/millimeter wave spectroscopy and imaging,” Appl. Opt. 47, 72–78 (2008). [CrossRef]
  10. P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25, 242–244 (2000). [CrossRef]
  11. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45, 2766–2772 (2006). [CrossRef] [PubMed]
  12. J. Beckmann, H. Richter, U. Zscherpel, U. Ewert, J. Weinzierl, L.-P. Schmidt, F. Rutz, M. Koch, H. Richter, and H.-W. Hübers, “Imaging capability of terahertz and millimeter-wave instrumentations for NDT of polymer materials,” in Proceedings of 9th European Conference on Nondestructive Testing (NDT) , R. Diederichs, ed. (The e-Journal of Nondestructive Testing, 2006).
  13. K. Naito, Y. Kagawa, S. Utsuno, T. Naganuma, and K. Kurihara, “Dielectric properties of eight-harness-stain fabric glass fiber reinforced polyimide matrix composite in the THz frequency range,” NDT & E Int. 42, 441–445 (2009). [CrossRef]
  14. K. Naito, Y. Kagawa, S. Utsuno, T. Naganuma, and K. Kurihara, “Dielectric properties of woven fabric glass fiber reinforced polymer matrix composites in the THz frequency range,” Compos. Sci. Technol. 69, 2027–2029 (2009). [CrossRef]
  15. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009). [CrossRef] [PubMed]
  16. Y. Dikmelik, J. B. Spicer, M. J. Fitch, and R. Osiander, “Effects of surface roughness on reflection spectra obtained by terahertz time-domain spectroscopy,” Opt. Lett. 31, 3653–3655 (2006). [CrossRef] [PubMed]
  17. T. Kleine-Ostmann, C. Jansen, R. Piesiewicz, D. Mittleman, M. Koch, and T. Kürner, “Propagation modeling based on measurements and simulations of surface scattering in specular direction,” in Proceedings of Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics , M. J. Griffin, P. C. Hargrave, T. J. Parker, and K. P. Wood, eds., vol. 1, pp. 408–410 (2007).
  18. R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch, and T. Kürner, “Scattering analysis for the modeling of THz communication systems,” IEEE Trans. Antennas Propag . 55, 3002–3009 (2007). [CrossRef]
  19. J. Pearce, Z. Jian, and D. M. Mittleman, “Statistics of multiply scattered broadband terahertz pulses,” Phys. Rev. Lett. 91, 043903 (2003). [CrossRef] [PubMed]
  20. J. Pearce and D. M. Mittleman, “Using terahertz pulses to study light scattering,” Phys. B 338, 92–96 (2003). [CrossRef]
  21. Z. Jian, J. Pearce, and D. M. Mittleman, “Characterizing individual scattering events by measuring the amplitude and phase of the electric field diffusing through a random medium,” Phys. Rev. Lett. 91, 033903 (2003). [CrossRef] [PubMed]
  22. S. Mujumdar, K. J. Chau, and A. Y. Elezzabi, “Experimental and numerical investigation of terahertz transmission through strongly scattering sub-wavelength size spheres,” Appl. Phys. Lett. 85, 6284–6286 (2004). [CrossRef]
  23. X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21, 2331–2340 (2007). [CrossRef]
  24. R. A. Cheville, M. T. Reiten, R. McGowan, and D. R. Grischkowsky, Applications of Optically Generated Terahertz Pulses to Time Domain Ranging and Scattering (Springer-Verlag, 2003).
  25. G. M. Png, R. J. Falconer, B. M. Fischer, H. A. Zakaria, S. P. Mickan, A. P. J. Middelberg, and D. Abbott, “Terahertz spectroscopic differentiation of microstructures in protein gels,” Opt. Express 17, 13102–13115 (2009). [CrossRef] [PubMed]
  26. C. A. Balanis, Antenna Theory: Analysis and Design (Harper & Row Publishers, 1982).
  27. E. Hecht, Optics (Addison-Wesley Publishing Company, 2002).
  28. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., 1957).
  29. M. Kerker, Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).
  30. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (SciTech Publishing Inc., 2004).
  31. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, and T. Kürner, “Terahertz characterisation of building materials,” Electron. Lett. 41, 1002–1004 (2005). [CrossRef]
  32. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102, 043517 (2007). [CrossRef]
  33. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989).
  34. G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Caldwell, and M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech . 51, 2139–2146 (2003). [CrossRef]
  35. L. Liu, S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, “Effective permittivity of planar composites with randomly or periodically distributed conducting fibers,” J. Appl. Phys. 98, 063512 (2005). [CrossRef]
  36. C. Hafner, The Multiple Multipole Program (MMP) and the Generalized Multipole Technique (GMT) , pp. 21–38 (Elsevier Science B.V., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited