OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10193–10198

Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect

Yongkang Gong, Zhiyuan Li, Jinxin Fu, Yuhui Chen, Guoxi Wang, Hua Lu, Leirang Wang, and Xueming Liu  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10193-10198 (2011)
http://dx.doi.org/10.1364/OE.19.010193


View Full Text Article

Enhanced HTML    Acrobat PDF (956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A three-dimensional metamaterial nanostructure for realizing all-optical absorption switching is proposed and investigated. The structure consists of dual metallic layers for allowing near-perfect absorption due to electric and magnetic resonances, and a nonlinear Kerr-dielectric layer for actively manipulating the nanostructure absorption. The finite-difference time-domain simulation results demonstrate that, by adjusting the incident optical intensity, the metamaterial absorption can be flexibly tuned from near unity to zero. The all-optical absorption switching structure can find potential applications in actively integrated photonic circuits for thermal sensing, photo detecting, and optical imaging.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3918) Materials : Metamaterials
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Metamaterials

History
Original Manuscript: March 31, 2011
Revised Manuscript: May 3, 2011
Manuscript Accepted: May 3, 2011
Published: May 9, 2011

Citation
Yongkang Gong, Zhiyuan Li, Jinxin Fu, Yuhui Chen, Guoxi Wang, Hua Lu, Leirang Wang, and Xueming Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect," Opt. Express 19, 10193-10198 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10193


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007). [CrossRef] [PubMed]
  3. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  4. S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef] [PubMed]
  5. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  6. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  7. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010). [CrossRef] [PubMed]
  8. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80(3), 035104 (2009). [CrossRef]
  9. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  11. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]
  12. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabricated and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]
  13. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010). [CrossRef]
  14. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007). [CrossRef] [PubMed]
  15. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009). [CrossRef]
  16. A. Modinos, V. Yannopapas, and N. Stefanou, “Scattering of electromagnetic waves by nearly periodic structures,” Phys. Rev. B 61(12), 8099–8107 (2000). [CrossRef]
  17. V. Yannopapas, “Thermal emission from three-dimensional arrays of gold nanoparticles,” Phys. Rev. B 73(11), 113108 (2006). [CrossRef]
  18. V. Yannopapas, A. Modinos, and N. Stefanou, “Scattering and absorption of light by periodic and nearly periodic metallodielectric structures,” Opt. Quantum Electron. 34(1/3), 227–234 (2002). [CrossRef]
  19. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  20. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010). [CrossRef] [PubMed]
  21. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  22. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010). [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).
  24. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008). [CrossRef] [PubMed]
  25. Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009). [CrossRef]
  26. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited