OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10206–10220

Engineering photonic nanojets

Myun-Sik Kim, Toralf Scharf, Stefan Mühlig, Carsten Rockstuhl, and Hans Peter Herzig  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10206-10220 (2011)
http://dx.doi.org/10.1364/OE.19.010206


View Full Text Article

Enhanced HTML    Acrobat PDF (1856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic Nanojets are highly localized wave fields emerging directly behind dielectric microspheres; if suitably illuminated. In this contribution we reveal how different illumination conditions can be used to engineer the photonic Nanojets by measuring them in amplitude and phase with a high resolution interference microscope. We investigate how the wavelength, the amplitude distribution of the illumination, its polarization, or a break in symmetry of the axial-symmetric structure and the illumination affect the position, the localization and the shape of the photonic Nanojets. Various fascinating properties are systematically revealed and their implications for possible applications are discussed.

© 2011 OSA

OCIS Codes
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(140.3300) Lasers and laser optics : Laser beam shaping
(180.3170) Microscopy : Interference microscopy
(290.4020) Scattering : Mie theory

ToC Category:
Physical Optics

History
Original Manuscript: April 5, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: May 2, 2011
Published: May 9, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Myun-Sik Kim, Toralf Scharf, Stefan Mühlig, Carsten Rockstuhl, and Hans Peter Herzig, "Engineering photonic nanojets," Opt. Express 19, 10206-10220 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1907).
  2. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981), Chap. 9.
  3. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009). [CrossRef] [PubMed]
  4. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef] [PubMed]
  5. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005). [CrossRef] [PubMed]
  6. C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010). [CrossRef] [PubMed]
  7. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008). [CrossRef] [PubMed]
  8. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009). [CrossRef] [PubMed]
  9. C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006). [CrossRef]
  10. M.-S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18(14), 14319–14329 (2010). [CrossRef] [PubMed]
  11. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983). [CrossRef] [PubMed]
  12. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  13. C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A, Pure Appl. Opt. 6(5), 271–276 (2004). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th ed.
  15. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. Entw. Mech 9, 413–468 (1873). [CrossRef]
  16. H. Köhler, “On Abbe’s theory of image formation in the microscope,” Opt. Acta (Lond.) 28, 1691–1701 (1981). [CrossRef]
  17. H. Gross, H. Zugge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley, 2007) Vol. 3, p. 126.
  18. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005) Vol. 2, p. 410.
  19. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987). [CrossRef]
  20. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  21. G. Indebetouw, “Nondiffracting optical-fields - some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6(1), 150–152 (1989). [CrossRef]
  22. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  23. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  24. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication). [PubMed]
  25. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008). [CrossRef] [PubMed]
  26. T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011). [CrossRef]
  27. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988). [CrossRef]
  28. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).
  29. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000). [CrossRef]
  30. G. M. Philip and N. K. Viswanathan, “Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam,” J. Opt. Soc. Am. A 27(11), 2394–2401 (2010). [CrossRef]
  31. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996). [CrossRef] [PubMed]
  32. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009). [CrossRef] [PubMed]
  33. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited