OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10293–10303

Generation of optical vortex array with transformation of standing-wave Laguerre-Gaussian mode

Y. C. Lin, T. H. Lu, K. F. Huang, and Y. F. Chen  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10293-10303 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1504 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a novel method of creating optical vortex array by the conversion of a standing-wave Laguerre-Gaussian (LG) mode. Theoretically, by employing the transformational relation, the standing-wave LG mode is verified to be transformed from a pair of crisscrossed Hermite-Gaussian (HG) modes, embedded with optical vortex array, consists of a TEMn,m mode and a TEMm,n mode. Due to close correspondence between the transformational relation and the mode conversion of astigmatic lenses, we successfully generate the optical vortex array by transforming a standing-wave LG mode into the crisscrossed HG modes via a π/2 cylindrical lens mode converter. The investigation may provide useful insight in the study of the vortex light beam and its further applications.

© 2011 OSA

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(140.3480) Lasers and laser optics : Lasers, diode-pumped

ToC Category:
Physical Optics

Original Manuscript: March 16, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: May 8, 2011
Published: May 10, 2011

Y. C. Lin, T. H. Lu, K. F. Huang, and Y. F. Chen, "Generation of optical vortex array with transformation of standing-wave Laguerre-Gaussian mode," Opt. Express 19, 10293-10303 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996). [CrossRef] [PubMed]
  2. M. S. Soskin and M. V. Vasnetsov, “Singular Optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  3. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]
  4. H. Adachi, S. Akahoshi, and K. Miyakawa, “Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light,” Phys. Rev. A 75(6), 063409 (2007). [CrossRef]
  5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  7. P. Senthilkumaran, “Optical phase singularities in detection of laser beam collimation,” Appl. Opt. 42(31), 6314–6320 (2003). [CrossRef] [PubMed]
  8. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  9. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt. 43(6), 1360–1367 (2004). [CrossRef] [PubMed]
  10. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]
  11. M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993). [CrossRef]
  12. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994). [CrossRef]
  13. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–233 (1992). [CrossRef] [PubMed]
  14. Y. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Opt. Lett. 30(18), 2472–2474 (2005). [CrossRef] [PubMed]
  15. G. Nienhuis and L. Allen, “Paraxial wave optics and harmonic oscillators,” Phys. Rev. A 48(1), 656–665 (1993). [CrossRef] [PubMed]
  16. E. Abramochkin and V. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun. 83(1-2), 123–135 (1991). [CrossRef]
  17. Y. F. Chen, Y. C. Lin, K. F. Huang, and T. H. Lu, “Spatial transformation of coherent optical waves with orbital morphologies,” Phys. Rev. A 82(4), 043801 (2010). [CrossRef]
  18. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46(15), 2893–2898 (2007). [CrossRef] [PubMed]
  19. K. O’Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Opt. Express 14(7), 3039–3044 (2006). [CrossRef] [PubMed]
  20. K. Otsuka and S. C. Chu, “Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping,” Opt. Lett. 34(1), 10–12 (2009). [CrossRef]
  21. J. Masajada, “Small-angle rotations measurement using optical vortex interferometer,” Opt. Commun. 239(4-6), 373–381 (2004). [CrossRef]
  22. M. D. Levenson, T. J. Ebihara, G. Dai, Y. Morikawa, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfabr. Microsyst. 3(2), 293–304 (2004). [CrossRef]
  23. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004). [CrossRef] [PubMed]
  24. G. H. Kim, J. H. Jeon, Y. C. Noh, K. H. Ko, H. J. Moon, J. H. Lee, and J. S. Chang, “An array of phase singularities in a self-defocusing medium,” Opt. Commun. 147(1-3), 131–137 (1998). [CrossRef]
  25. G. Grynberg, A. Maître, and A. Petrossian, “Flowerlike patterns generated by a laser beam transmitted through a rubidium cell with single feedback mirror,” Phys. Rev. Lett. 72(15), 2379–2382 (1994). [CrossRef] [PubMed]
  26. C. Green, G. B. Mindlin, E. J. D’Angelo, H. G. Solari, and J. R. Tredicce, “Spontaneous symmetry breaking in a laser: The experimental side,” Phys. Rev. Lett. 65(25), 3124–3127 (1990). [CrossRef] [PubMed]
  27. Y. F. Chen, T. H. Lu, and K. F. Huang, “Hyperboloid structures formed by polarization singularities in coherent vector fields with longitudinal-transverse coupling,” Phys. Rev. Lett. 97(23), 233903 (2006). [CrossRef]
  28. M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010). [CrossRef]
  29. S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73(16), 2239 (1998). [CrossRef]
  30. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24(7), 430–432 (1999). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  32. G. A. Swartzlander., “Dark-soliton prototype devices: analysis by using direct-scattering theory,” Opt. Lett. 17, 789–791 (1992).
  33. Y. F. Chen and Y. P. Lan, “Dynamics of the Laguerre Gaussian TEM*0,1 mode in a solid-state laser,” Phys. Rev. A 63(6), 063807 (2001). [CrossRef]
  34. A. E. Siegman, Lasers (University Science, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited