OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10326–10335

Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers

Chalongrat Daengngam, Matthias Hofmann, Zhiwen Liu, Anbo Wang, James R. Heflin, and Yong Xu  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10326-10335 (2011)
http://dx.doi.org/10.1364/OE.19.010326


View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication and characterization of a cylindrically symmetric fiber structure that possesses significant and thermodynamically stable second-order nonlinearity. Such fiber structure is produced through nanoscale self-assembly of nonlinear molecules on a silica fiber taper and possesses full rotational symmetry. Despite its highly symmetric configuration, we observed significant second harmonic generation (SHG) and obtained good agreement between experimental results and theoretical predictions.

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 1, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 6, 2011
Published: May 11, 2011

Virtual Issues
June 3, 2011 Spotlight on Optics

Citation
Chalongrat Daengngam, Matthias Hofmann, Zhiwen Liu, Anbo Wang, James R. Heflin, and Yong Xu, "Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers," Opt. Express 19, 10326-10335 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear fiber optics (Elsevier, Singapore, 2007)
  2. B. P. Antonyuk, N. N. Novikova, N. V. Didenko, and O. A. Aktsipetrov, “All optical poling and second harmonic generation in glasses: theory and experiment,” Phys. Lett. A 287(1-2), 161–168 (2001). [CrossRef]
  3. M. K. Balakirev, V. A. Smirnov, and L. I. Vostrikova, “Photorefractive effect on all optical polling of glass,” J. Opt. A, Pure Appl. Opt. 5(6), S437–S443 (2003). [CrossRef]
  4. V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33(17), 2011–2013 (2008). [CrossRef] [PubMed]
  5. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991). [CrossRef] [PubMed]
  6. H. An and S. Fleming, “Second-order optical nonlinearity in thermally poled borosilicate glass,” Appl. Phys. Lett. 89, 181111(1)-181111(3) (2006).
  7. A. Canagasabey, C. Corbari, Z. Zhang, P. G. Kazansky, and M. Ibsen, “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett. 32(13), 1863–1865 (2007). [CrossRef] [PubMed]
  8. V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,” Opt. Lett. 24(4), 208–210 (1999). [CrossRef]
  9. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009). [CrossRef] [PubMed]
  10. T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71(8), 1032–1034 (1997). [CrossRef]
  11. C. Corbari, P. G. Kazasky, S. A. Slattery, and N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86, 071106(1)-071106 (3) (2005).
  12. A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992). [CrossRef]
  13. S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68(25), 3552–3554 (1996). [CrossRef]
  14. C.-A. Tsai, J. N. Wang, V. Chao-Wei-Kuo, T. Y. Cheng, W.-R. Liou, and A. Y. Wu, “Enhancement of SHG in fused SiO2 by corona poling under water, water vapor and salty environments,” J. Mar. Sci. Technol. 16, 90–102 (2008).
  15. Y. Jiang, P. T. Wilson, M. Downer, C. W. White, and S. P. Withrow, “Second harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78(6), 766–768 (2001). [CrossRef]
  16. Y. Yamamoto, H. Nasu, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled CdS microcrystal-containing glasses,” J. Non-Cryst. Solids 281(1-3), 198–204 (2001). [CrossRef]
  17. X. Xiao, Q. Liu, G. Dong, and X. Zhao, “Second-order optical nonlinearity in Sb2S3 microcrystal doped glasses by electron beam irradiation,” Opt. Commun. 274(2), 456–460 (2007). [CrossRef]
  18. A. L. Moura, M. T. de Araujo, M. V. D. Vermelho, and J. S. Aitchison, “Improved stability of the induced second-order nonlinearity in soft glass by thermal poling,” J. Appl. Phys. 100(3), 033509 (2006). [CrossRef]
  19. T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Decay behaviour of second-order nonlinearity in GeO2-SiO2 glass poled with UV-irradiation,” Electron. Lett. 33(11), 980–982 (1997). [CrossRef]
  20. H. Imai, S. Horinouchi, Y. Uchida, H. Yamasaki, K. Fukao, G. Zhang, T. Kinoshita, K. Mito, H. Hirashima, and K. Sasaki, “Time-dependent decay of quadratic non-linearity in corona-poled silicate glass films,” J. Non-Cryst. Solids 196, 63–66 (1996). [CrossRef]
  21. Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large thermodynamically stable second order nonlinearity,” Appl. Phys. Lett. 90(21), 211110 (2007). [CrossRef]
  22. Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100(16), 163905 (2008). [CrossRef] [PubMed]
  23. J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir 22(13), 5723–5727 (2006). [CrossRef] [PubMed]
  24. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992). [CrossRef]
  25. S. Xue, M. van Eijkelenborg, G. W. Barton, and P. Hambley, “Theoretical, numerical, and experimental analysis of optical fiber tapering,” J. Lightwave Technol. 25(5), 1169–1176 (2007). [CrossRef]
  26. K. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “P, Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low-molecular-weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed. 41(17), 3236–3238 (2002). [CrossRef]
  27. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15(21), 13805–13816 (2007). [CrossRef] [PubMed]
  28. Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Sum-frequency light generation in optical fibers,” Opt. Lett. 5(2), 48–50 (1980). [CrossRef] [PubMed]
  29. M. A. Saifi and M. J. Andrejco, “Second-harmonic generation in single-mode and multimode fibers,” Opt. Lett. 13(9), 773–775 (1988). [CrossRef] [PubMed]
  30. D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Brisk, W. J. Wadsworth, P. St. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).
  31. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007). [CrossRef]
  32. Y. R. Shen, The principles of nonlinear optics (John Wiley and Sons, New Jersey, 1984)
  33. M. J. Cho, D. H. Choi, P. A. Sullivan, A. J. P. Akelaitis, and L. R. Dalton, “Recent progress in second-order nonlinear optical polymer and dendrimers,” Prog. Polym. Sci. 33(11), 1013–1058 (2008). [CrossRef]
  34. B. Brochers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys. 107, 063106(1)-063106(4) (2010).
  35. A. Rastogi, M. Y. Paik, M. Tanaka, and C. K. Ober, “Direct patterning of intrinsically electron beam sensitive polymer brushes,” ACS Nano 4(2), 771–780 (2010). [CrossRef] [PubMed]
  36. F. Pan, P. Wang, K. Lee, A. Wu, N. J. Turro, and J. T. Koberstein, “Photochemical modification and patterning of polymer surfaces by surface adsorption of photoactive block copolymers,” Langmuir 21(8), 3605–3612 (2005). [CrossRef] [PubMed]
  37. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18(8), 7693–7704 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited