OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10429–10442

Mechanisms for extraordinary optical transmission through bull’s eye structures

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10429-10442 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze both experimentally and theoretically the physical mechanisms that determine the optical transmission through deep sub-wavelength bull’s eye structures (concentric annular grooves surrounding a circular hole). Our analysis focus on the transmission resonance as a function of the distance between the central hole and its nearest groove. We find that, for that resonance, each groove behaves almost independently, acting as an optical cavity that couples to incident radiation, and reflecting the surface plasmons radiated by the other side of the same cavity. It is the constructive contribution at the central hole of these standing waves emitted by independent grooves which ends up enhancing transmission. Also for each groove the coupling and reflection coefficients for surface plasmons are incorporated into a phenomenological Huygens-Fresnel model that gathers the main mechanisms to enhance transmission. Additionally, it is shown that the system presents a collective resonance in the electric field that does not lead to resonant transmission, because the fields radiated by the grooves do not interfere constructively at the central hole.

© 2011 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(050.1220) Diffraction and gratings : Apertures
(050.1950) Diffraction and gratings : Diffraction gratings
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: February 14, 2011
Revised Manuscript: March 24, 2011
Manuscript Accepted: March 28, 2011
Published: May 12, 2011

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen, "Mechanisms for extraordinary optical transmission through bull’s eye structures," Opt. Express 19, 10429-10442 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [PubMed]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. K. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729787 (2010).
  3. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
  4. T. Thio, H. L. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [PubMed]
  6. F. I. Baida, D. V. Labeke, and B. Guizal, “Enhanced Confined Light Transmission by Single Subwavelength Apertures in Metallic Films,” Appl. Opt. 42, 68116815 (2003). [PubMed]
  7. A. Degiron and T. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004). [PubMed]
  8. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwave-length aperture,” Opt. Express 13, 3535–3542 (2005). [PubMed]
  9. Z.-B. Li, J.-G. Tian, Z.-B. Liu, W.-Y. Zhou, and C.-P. Zhang, “Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectrice,” Opt. Express 13, 9071–9077 (2005). [PubMed]
  10. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010). [PubMed]
  11. H. Ko, H. C. Kim, and M. Cheng, “Light focusing at metallic annular slit structure coated with dielectric layers,” Appl. Opt. 49, 950–954 (2010). [PubMed]
  12. L.-L. Wang, X.-F. Ren, R. Yang, G.-C. Guo, and G.-P. Guo, “Transmission of doughnut light through a bulls eye structure,” Appl. Phys. Lett 95, 111111–111113 (2009).
  13. T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005).
  14. X. C. G. Zheng and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” PNAS 107, 9043–9048 (2010). [PubMed]
  15. G. Zheng and C. Yang, “Improving weak-signal identification via predetection background suppression by a pixel-level, surface-wave-enabled dark-field aperture,” Opt. Lett. 35, 2636–26348 (2010). [PubMed]
  16. J. H. M. Consonni and G. Lérondel, “Fabry-Perot type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94, 051105-1-051105-3 (2009).
  17. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Phys. Rev. Lett. 90, 167401–167404 (2003). [PubMed]
  18. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90, 213901–213904 (2003). [PubMed]
  19. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett. 31, 2341–2343 (2006). [PubMed]
  20. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission throughsubwavelength apertures in thin metal films,” Opt. Express 15, 7984–7993 (2007). [PubMed]
  21. O. T. A. Janssen, H. P. Urbach, and G. W. t’ Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902–043905 (2007). [PubMed]
  22. L. Wang, J.-X. Cao, Y. Lv, L. Liu, T.-Y. Niu, and Y.-C. Du, “Experimental study of surface-wave-assisted microwave transmission through a single subwavelength slit,” J. Appl. Phys. 105, 093115-093115-6 (2009b).
  23. Y. Cui and S. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17, 13995–14000 (2009). [PubMed]
  24. L. Cai, G. Li, Z. Wang, and A. Xu, “Interference and horizontal Fabry-Perot resonance on extraordinary transmission through a metallic nanoslit surrounded by grooves,” Opt. Lett. 35, 127–129 (2010). [PubMed]
  25. A. Roberts and R. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antennas Propag. 36, 607–611 (1988).
  26. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
  27. L. Martín-Moreno and F. J. García-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys.: Condens. Matter 20, 304214 (2008).
  28. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continous Media (Pergamon Press, New York, 1960).
  29. E. D. Palik, Handbook of optical constants of solids II (Boston: Academic Press, 1991, edited by Edward D. Palik, 1991).
  30. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B (R) 72, 161405(R)–161408 (2005).
  31. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551–556 (2006).
  32. J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments,” Opt. Express 15, 3488–3495 (2007). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited