OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10456–10461

Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna

Shawn Sederberg and A.Y. Elezzabi  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10456-10461 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new class of bowtie antennas with Sierpiński fractal features is proposed for sensing molecular vibration modes in the near- to mid-infrared. These antennas offer a compact device footprint and an enhanced confinement factor compared to a bowtie antenna. Through extensive simulations, it is shown that these characteristics are related to the ability of this fractal geometry to become polarized. Simulation results demonstrate that these antennas may be tuned between 700nm ≤ λ ≤ 3.4µm and that electric field enhancement by 56 is possible at the center of the antenna gap.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: March 14, 2011
Revised Manuscript: March 28, 2011
Manuscript Accepted: March 29, 2011
Published: May 12, 2011

Shawn Sederberg and A.Y. Elezzabi, "Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna," Opt. Express 19, 10456-10461 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, 1982).
  2. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, 2003).
  3. D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Trans. Antennas Propag. 45, 38–57 (2003).
  4. C. Gaubert, L. Chusseau, A. Giani, D. Gasquet, F. Garet, F. Aquistapace, L. Duvillaret, J.-L. Coutaz, and W. Knap, “THz fractal antennas for electrical and optical semiconductor emitters and receptors,” Phys. Status Solidi 1(6c), 1439–1444 (2004). [CrossRef]
  5. Y.-J. Bao, B. Zhang, Z. Wu, J.-W. Si, M. Wang, R.-W. Peng, X. Lu, J. Shao, Z.-F. Li, X.-P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal-featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007). [CrossRef]
  6. F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Teraherz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008). [CrossRef]
  7. A. Agrawal, T. Matsui, W. Zhu, A. Nahata, and Z. V. Vardeny, “Terahertz spectroscopy of plasmonic fractals,” Phys. Rev. Lett. 102(11), 113901 (2009). [CrossRef] [PubMed]
  8. J. Matteo and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13(2), 636–647 (2005). [CrossRef] [PubMed]
  9. B. Hou, X. Q. Liao, and J. K. S. Poon, “Resonant infrared transmission and effective medium response of subwavelength H-fractal apertures,” Opt. Express 18(4), 3946–3951 (2010). [CrossRef] [PubMed]
  10. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  11. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008). [CrossRef] [PubMed]
  12. G. W. Hanson, “On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas,” IEEE Trans. Antenn. Propag. 54(12), 3677–3685 (2006). [CrossRef]
  13. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  14. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009). [CrossRef] [PubMed]
  15. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  16. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007). [CrossRef]
  17. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  19. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005). [CrossRef]
  20. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, ““Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited