OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10462–10470

Integrated GaN photonic circuits on silicon (100) for second harmonic generation

Chi Xiong, Wolfram Pernice, Kevin K. Ryu, Carsten Schuck, King Y. Fong, Tomas Palacios, and Hong X. Tang  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10462-10470 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1500 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The χ2 nonlinear susceptibility is measured to be as high as 16 ± 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and infrared wavelengths, our platform provides a viable route for the on-chip generation of optical wavelengths in both the far infrared and near-UV through a combination of χ2 enabled sum-/difference-frequency processes.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

Original Manuscript: April 1, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: May 1, 2011
Published: May 12, 2011

Chi Xiong, Wolfram Pernice, Kevin K. Ryu, Carsten Schuck, King Y. Fong, Tomas Palacios, and Hong X. Tang, "Integrated GaN photonic circuits on silicon (100) for second harmonic generation," Opt. Express 19, 10462-10470 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010). [PubMed]
  2. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [PubMed]
  3. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
  4. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
  5. J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007). [PubMed]
  6. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
  8. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999). [PubMed]
  9. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [PubMed]
  10. S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010). [PubMed]
  11. M. Abe, H. Sato, I. Shoji, J. Suda, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Kondo, “Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride,” J. Opt. Soc. Am. B 27(10), 2026–2034 (2010).
  12. A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
  13. X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
  14. J. Miragliotta, D. K. Wickenden, T. J. Kistenmacher, and W. A. Bryden, “Linear- and nonlinear-optical properties of GaN thin films,” J. Opt. Soc. Am. B 10(8), 1447–1456 (1993).
  15. A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).
  16. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
  17. A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)
  18. W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72(5), 599–601 (1998).
  19. J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).
  20. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004). [PubMed]
  21. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010). [PubMed]
  22. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [PubMed]
  23. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [PubMed]
  24. K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).
  25. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, CA, 2003), pp. xvii, 578 p.
  26. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000).
  27. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Quantum Electronics–Principles and Applications Series (Elsevier/Academic, Amsterdam 2007), p. xvi.
  28. D. G. Rabus, Integrated Ring Resonators: the Compendium, Springer Series in Optical Sciences (Springer, Berlin, 2007), p. xv.
  29. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008). [PubMed]
  30. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Second-harmonic generation in silicon nitride ring resonators,” arXiv:1010.6042v1, http://arxiv.org/abs/1010.6042

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited