OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10485–10493

Fanolike resonance due to plasmon excitation in linear chains of metal bumps

Xiao-gang Yin, Cheng-ping Huang, Qian-jin Wang, Wan-xia Huang, Lin Zhou, Chao Zhang, and Yong-yuan Zhu  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10485-10493 (2011)
http://dx.doi.org/10.1364/OE.19.010485


View Full Text Article

Enhanced HTML    Acrobat PDF (1398 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the transmission anomaly in a modified slit grating, which is dressed, on the slit sidewalls, with the linear chains of metal bumps. An asymmetric lineshape, which is characteristic of the Fano resonance, has been found in a narrow frequency range of the spectrum. The effect can be attributed to the interference between nonresonant background transmission and resonant plasmonic wave excitation in the linear chains. The dispersion of chain plasmon mode has been suggested, enabling the dynamic tuning of spectral position of the Fano effect.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 4, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: May 7, 2011
Published: May 12, 2011

Citation
Xiao-gang Yin, Cheng-ping Huang, Qian-jin Wang, Wan-xia Huang, Lin Zhou, Chao Zhang, and Yong-yuan Zhu, "Fanolike resonance due to plasmon excitation in linear chains of metal bumps," Opt. Express 19, 10485-10493 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10485


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005). [CrossRef] [PubMed]
  3. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008). [CrossRef] [PubMed]
  4. X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105(24), 243901 (2010). [CrossRef]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  6. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003). [CrossRef]
  7. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003). [CrossRef]
  8. W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005). [CrossRef] [PubMed]
  9. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  10. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007). [CrossRef] [PubMed]
  11. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  12. K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88(25), 256806 (2002). [CrossRef] [PubMed]
  13. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009). [CrossRef] [PubMed]
  14. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  15. X. G. Yin, C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Transmission resonance in a composite plasmonic structure,” Phys. Rev. B 79(15), 153404 (2009). [CrossRef]
  16. X. G. Yin, C. P. Huang, Z. Q. Shen, Q. J. Wang, and Y. Y. Zhu, “Splitting of transmission peak due to the hole symmetry breaking,” Appl. Phys. Lett. 94(16), 161904 (2009). [CrossRef]
  17. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005). [CrossRef] [PubMed]
  18. D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett. 93(7), 073109 (2008). [CrossRef]
  19. Here, for simplicity, the potential contribution from the neighbor charges has been neglected. The counting of neighbor contribution will add more circuit parameters and modify (enlarge) the chain-mode dispersion. Nonetheless, no further physical understanding can be provided.
  20. C. P. Huang, X. G. Yin, H. Huang, and Y. Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17(8), 6407–6413 (2009). [CrossRef] [PubMed]
  21. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005). [CrossRef] [PubMed]
  22. C. P. Huang, X. G. Yin, L. B. Kong, and Y. Y. Zhu, “Interactions of nanorod particles in the strong coupling regime,” J. Phys. Chem. C 114(49), 21123–21131 (2010). [CrossRef]
  23. C. Kittel, Introduction to Solid State Physics (Wiley, 2005).
  24. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009). [CrossRef]
  25. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited