OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10494–10500

In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials

Marco Castriota, Angela Fasanella, Enzo Cazzanelli, Luciano De Sio, Roberto Caputo, and Cesare Umeton  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10494-10500 (2011)
http://dx.doi.org/10.1364/OE.19.010494


View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In situ polarized micro-Raman Spectroscopy has been utilized to determine the liquid crystal configuration inside a periodic liquid crystalline composite structure made of polymer slices alternated to films of liquid crystal. Liquid crystal, Norland Optical Adhesive (NOA-61) monomer and its polymerized form have been investigated separately. The main Raman features, used as markers for the molecular orientation estimation, have been identified. In situ polarized Raman spectra indicate that the orientation of the liquid crystal director inside the structure is perpendicular to its polymeric slices. Results show the usefulness of in situ polarized micro-Raman spectroscopy to investigate liquid crystalline composite structures.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Optical Devices

History
Original Manuscript: April 4, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: May 7, 2011
Published: May 12, 2011

Citation
Marco Castriota, Angela Fasanella, Enzo Cazzanelli, Luciano De Sio, Roberto Caputo, and Cesare Umeton, "In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials," Opt. Express 19, 10494-10500 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Natarajan, R. L. Sutherland, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5(1), 89–98 (1996). [CrossRef]
  2. A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004). [CrossRef]
  3. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “POLICRYPS switchable holographic grating: a promising grating electro-optical pixel for high resolution display application,” J. Display Technol. 2(1), 38–51 (2006). [CrossRef]
  4. A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008). [CrossRef] [PubMed]
  5. R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A, Pure Appl. Opt. 11(2), 024017 (2009). [CrossRef]
  6. NANOGOLD project: “Self-organized Nanomaterials for tailored optical and electrical properties” (Seventh Framework Programme Theme, NMP-2008–2.2–2, Nano-structured metamaterials grant agreement no. 228455).
  7. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004). [CrossRef] [PubMed]
  8. L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45(16), 3721–3727 (2006). [CrossRef] [PubMed]
  9. A. R. E. Brás, T. Casimiro, J. Caldeira, and A. Aguiar-Ricardo, “Solubility of the nematic liquid crystal E7 in supercritical carbon dioxide,” J. Chem. Eng. Data 50(6), 1857–1860 (2005). [CrossRef]
  10. S.-W. Joo, T. D. Chung, W. C. Jang, M.-S. Gong, N. Geum, and K. Kim, “Surface-enhanced Raman scattering of 4-Cyanobiphenyl on gold and silver nanoparticle surfaces,” Langmuir 18(23), 8813–8816 (2002). [CrossRef]
  11. I. Nicotera, C. Oliviero, G. Ranieri, A. Spadafora, M. Castriota, and E. Cazzanelli, “Temperature evolution of thermoreversible polymer gel electrolytes LiClO4/ethylene carbonate/poly(acrylonitrile),” J. Chem. Phys. 117(15), 7373–7380 (2002). [CrossRef]
  12. W. J. Jones, D. K. Thomas, D. W. Thomas, and G. Williams, “On the determination of order parameters for homogeneous and twisted nematic liquid crystals from Raman spectroscopy,” J. Mol. Struct. 708(1-3), 145–163 (2004). [CrossRef]
  13. E. W. Astrova, T. S. Perova, S. A. Grudinkin, V. A. Tolmachev, Yu. A. Pilyugina, V. B. Voronkov, and J. K. Vij, “Polarized infrared and Raman spectroscopic studies of the liquid crystal E7 alignment in composites based on grooved silicon,” Semiconductors 39(7), 759–767 (2005). [CrossRef]
  14. B. Pinto-Iguanero, A. Olivares-Perez, and I. Fuentes-Tapia, “Holographic material film composed by Norland Noa 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002). [CrossRef]
  15. H. T. A. Wilderbeek, J. H. G. P. Goossens, C. W. M. Bastiaansen, and D. J. Broer, “Photoinitiated bulk polymerization of liquid crystalline thiolene monomers,” Macromolecules 35(24), 8962–8968 (2002). [CrossRef]
  16. M. Claudino, M. Johansson, and M. Jonsson, “Thiol–ene coupling of 1,2-disubstituted alkene monomers: the kinetic effect of cis/trans-isomer structures,” Eur. Polym. J. 46(12), 2321–2332 (2010). [CrossRef]
  17. H. F. Gleeson, C. D. Southern, P. D. Brimicombe, J. W. Goodby, and V. Görtz, “Optical measurements of orientational order in uniaxial and biaxial nematic liquid crystals,” Liq. Cryst. 37(6), 949–959 (2010). [CrossRef]
  18. J. K. Lim, O. Kwon, D. S. Kang, and S.-W. Joo, “Raman spectroscopy study and density functional theory calculations of the nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl under an electric field,” Chem. Phys. Lett. 423(1-3), 178–182 (2006). [CrossRef]
  19. W. J. Jones, D. K. Thomas, D. W. Thomas, and G. Williams, “Raman scattering studies of homogeneous and twisted-nematic liquid crystal cells and the determination of <P2> and <P4> order parameters,” J. Mol. Struct. 614(1-3), 75–85 (2002). [CrossRef]
  20. E. A. Büyüktanir, K. Zhang, A. Gericke, and J. L. West, “Raman imaging of nematic and smectic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 487, 39–51 (2008). [CrossRef]
  21. A. Sanchez-Castillo, M. A. Osipov, and F. Giesselmann, “Orientational order parameters in liquid crystals: a comparative study of x-ray diffraction and polarized Raman spectroscopy results,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 021707 (2010). [CrossRef] [PubMed]
  22. R. Caputo, I. Trebisacce, L. De Sio, and C. Umeton, “Jones matrix analysis of dichroic phase retarders realized in soft matter composite materials,” Opt. Express 18(6), 5776–5784 (2010). [CrossRef] [PubMed]
  23. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19(12), 2995–3003 (2002). [CrossRef]
  24. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19(12), 3004–3012 (2002). [CrossRef]
  25. K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited