OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10536–10552

Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe

Christopher L. Hoy, Onur Ferhanoğlu, Murat Yildirim, Wibool Piyawattanametha, Hyejun Ra, Olav Solgaard, and Adela Ben-Yakar  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10536-10552 (2011)
http://dx.doi.org/10.1364/OE.19.010536


View Full Text Article

Enhanced HTML    Acrobat PDF (1455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the optical design of a 9.6-mm diameter fiber-coupled probe for combined femtosecond laser microsurgery and nonlinear optical imaging. Towards enabling clinical use, we successfully reduced the dimensions of our earlier 18-mm microsurgery probe by half, while improving optical performance. We use analytical and computational models to optimize the miniaturized lens system for off-axis scanning aberrations. The optimization reveals that the optical system can be aberration-corrected using simple aspheric relay lenses to achieve diffraction-limited imaging resolution over a large field of view. Before moving forward with custom lenses, we have constructed the 9.6-mm probe using off-the-shelf spherical relay lenses and a 0.55 NA aspheric objective lens. In addition to reducing the diameter by nearly 50% and the total volume by 5 times, we also demonstrate improved lateral and axial resolutions of 1.27 µm and 13.5 µm, respectively, compared to 1.64 µm and 16.4 µm in our previous work. Using this probe, we can successfully image various tissue samples, such as rat tail tendon that required 2-3 × lower laser power than the current state-of-the-art. With further development, image-guided, femtosecond laser microsurgical probes such as this one can enable physicians to achieve the highest level of surgical precision anywhere inside the body.

© 2011 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(220.4830) Optical design and fabrication : Systems design
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 26, 2011
Revised Manuscript: February 23, 2011
Manuscript Accepted: March 18, 2011
Published: May 13, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Christopher L. Hoy, Onur Ferhanoğlu, Murat Yildirim, Wibool Piyawattanametha, Hyejun Ra, Olav Solgaard, and Adela Ben-Yakar, "Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe," Opt. Express 19, 10536-10552 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10536


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  2. H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197, e2 (2009). [CrossRef]
  3. A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153–2158 (2002). [CrossRef]
  4. M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79, 269–271 (2004). [CrossRef]
  5. W. B. Armstrong, J. A. Neev, L. B. Da Silva, A. M. Rubenchik, and B. C. Stuart, “Ultrashort pulse laser ossicular ablation and stapedotomy in cadaveric bone,” Lasers Surg. Med. 30(3), 216–220 (2002). [CrossRef] [PubMed]
  6. J. Ilgner, M. Wehner, J. Lorenzen, M. Bovi, and M. Westhofen, “Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles,” J. Biomed. Opt. 11(1), 014004 (2006). [CrossRef] [PubMed]
  7. R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040–024046 (2009). [CrossRef] [PubMed]
  8. H. Wisweh, U. Merkel, A. K. Huller, K. Lurben, and H. Lubatschowski, “Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery ” in Therapeutic Laser Applications and Laser-Tissue Interaction III, A. Vogel, ed. (2007), p. 63207.
  9. C. L. Hoy, W. N. Everett, J. Kobler, and A. Ben-Yakar, “Toward endoscopic ultrafast laser microsurgery of vocal folds,” Proc. SPIE 7548, 754831 (2010).
  10. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008). [CrossRef] [PubMed]
  11. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  12. H. Ürey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004). [CrossRef] [PubMed]
  13. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008). [CrossRef] [PubMed]
  14. K. Carlsson, “The influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy,” J. Microsc. 163, 167–178 (1991). [CrossRef]
  15. T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik (Stuttg.) 90, 17–19 (1992).
  16. D. Lee, and O. Solgaard, “Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive,” in Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, (Hilton Head Island, South Carolina, 2004), pp. 352–355.
  17. G. F. Marshall, Handbook of optical and laser scanning (Marcel Dekker, 2004).
  18. R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997).
  19. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006). [CrossRef]
  20. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6(4), 385–396 (2001). [CrossRef] [PubMed]
  21. C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and non-repeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. in press. [PubMed]
  22. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  23. W. Piyawattanametha, E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, (Hualien, Taiwan, 2007).
  24. G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, “Rotational multiphoton endoscopy with a 1 microm fiber laser system,” Opt. Lett. 34(15), 2249–2251 (2009). [CrossRef] [PubMed]
  25. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009). [CrossRef] [PubMed]
  26. G. Liu, K. Kieu, F. W. Wise, and Z. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics 4(1-2), 34–39 (2011). [CrossRef]
  27. C. L. Hoy, N. Durr, P. Chen, D. K. Smith, T. Larson, W. Piyawattanametha, H. Ra, B. Korgel, K. Sokolov, O. Solgaard, and A. Ben-Yakar, “Two-Photon Luminescence Imaging Using a MEMS-Based Miniaturized Probe,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 2008), paper CThG5.
  28. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt. 12(4), 040501 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited