OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10632–10639

High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes

N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10632-10639 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated quantum key distribution (QKD) over 100 km using single-photon detectors based on InGaAs/InP avalanche photodiodes (APDs). We implemented the differential phase shift QKD (DPS-QKD) protocol with electrically cooled and 2-GHz sinusoidally gated APDs. The single-photon detector has a dark count probability of 2.8×10−8 (55 counts per second) with a detection efficiency of 6 %, which enabled us to achieve 24 kbit/s secure key rate over 100 km of optical fiber. The DPS-QKD system offers better performances in a practical way than those achieved using superconducting single-photon detectors. Moreover, the distance that secure keys against the general individual attacks can be distributed has been extended to 160 km.

© 2011 OSA

OCIS Codes
(270.5570) Quantum optics : Quantum detectors
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: February 24, 2011
Revised Manuscript: March 29, 2011
Manuscript Accepted: March 29, 2011
Published: May 16, 2011

N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, "High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes," Opt. Express 19, 10632-10639 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” Proc. of IEEE International Conference on Computers, Systems and Signal Processing1984, 175–179 (1984).
  2. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution,” Phys. Rev. Lett. 89(3), 037902 (2002). [CrossRef] [PubMed]
  3. H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005). [CrossRef] [PubMed]
  4. N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv:quant-ph/0411022 (2004).
  5. D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 5, 325–360 (2004).
  6. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73(1), 012344 (2006). [CrossRef]
  7. C. H. Bennet, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5(1), 3–28 (1992). [CrossRef]
  8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007). [CrossRef]
  9. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11(7), 075003 (2009). [CrossRef]
  10. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004). [CrossRef]
  11. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87(19), 194108 (2005). [CrossRef]
  12. N. Namekata, G. Fujii, T. Honjo, H. Takesue, and S. Inoue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode,” Appl. Phys. Lett. 91, 011112 (2007). [CrossRef]
  13. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008). [CrossRef]
  14. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18979 (2008). [CrossRef]
  15. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010). [CrossRef]
  16. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16(15), 11354–11360 (2008). [CrossRef] [PubMed]
  17. M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Frst, J.-D.. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hbel, G. Humer, T. Lnger, M. Legr, R. Lieger, J. Lodewyck, T. Lornser, N. Ltkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel1, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vanne, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. 11(7), 075001 (2009). [CrossRef]
  18. A. Mirza and F. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B 27(6), A185–A188 (2010). [CrossRef]
  19. The Tokyo QKD network demonstration, http://www.uqcc2010.org/index.html .
  20. Swissquantum; the longest running project for testing QKD in a field environment, http://swissquantum.idquantique.com/ .
  21. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29(23), 2797–2799 (2004). [CrossRef] [PubMed]
  22. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51(9), 1381–1398 (2004).
  23. M. A. Itzler, R. Ben-Michael, C.-F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications,” J. Mod. Opt. 54(2), 283–304 (2007). [CrossRef]
  24. A. Tomita and K. Nakamura, “Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm,” Opt. Lett. 27(20), 1827–1829 (2002). [CrossRef]
  25. A. Yoshizawa, S. Odate, and H. Tsuchida, “Discharge pulse counting for low-noise single-photon detection at 1550 nm using InGaAs avalanche photodiode cooled to 130 K,” Jpn. J Appl. Phys. 46(1), 220–222 (2007). [CrossRef]
  26. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz Single-Photon Detection at 1550-nm Using an InGaAs/InP Avalanche Photodiode Operated with a Sine Wave Gating,” Opt. Express 14(21), 10043–10049 (2006). [CrossRef] [PubMed]
  27. N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010). [CrossRef]
  28. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010). [CrossRef]
  29. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
  30. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010). [CrossRef]
  31. H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33(7), 639–641 (2008). [CrossRef] [PubMed]
  32. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Goltsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and Roman Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors,” Appl. Phys. Lett. 84(26), 5338–5340 (2004). [CrossRef]
  33. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35(13), 2133–2135 (2010). [CrossRef] [PubMed]
  34. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009). [CrossRef] [PubMed]
  35. G. Brassard and L. Salvail, in Advances in Cryptology-EUROCRYPT’93 edited by T. Hellseth, Lecture Notes in Computer Science765 (Springer), 410–423 (1994). [CrossRef]
  36. M. Curty, L. L. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Inf. Comput. 7(5–6), 665–688 (2007).
  37. T. Tsurumaru, “Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol,” Phys. Rev. A 75(6), 062319 (2007). [CrossRef]
  38. K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single-photon differential phase shift quantum key distribution,” Phys. Rev. Lett. 103(17), 170503 (2009). [CrossRef] [PubMed]
  39. K. Inoue and Y. Iwai, “Differential-quadrature-phase-shift quantum key distribution,” Phys. Rev. A 79(2), 022319 (2009) [CrossRef]
  40. V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100(20), 200501 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited