OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10692–10697

Design of phase-shifting algorithms by fine-tuning spectral shaping

A. Gonzalez, M. Servin, J. C. Estrada, and J. A. Quiroga  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10692-10697 (2011)
http://dx.doi.org/10.1364/OE.19.010692


View Full Text Article

Enhanced HTML    Acrobat PDF (902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To estimate the modulating wavefront of an interferogram in Phase Shifting Interferometry (PSI) one frequently uses a Phase Shifting Algorithm (PSA). All PSAs take as input N phase-shifted interferometric measures, and give an estimation of their modulating phase. The first and best known PSA designed explicitly to reduce a systematic error source (detuning) was the 5-steps, Schwider-Hariharan (SH-PSA) PSA. Since then, dozens of PSAs have been published, designed to reduce specific data error sources on the demodulated phase. In Electrical Engineering the Frequency Transfer Function (FTF) of their linear filters is their standard design tool. Recently the FTF is also being used to design PSAs. In this paper we propose a technique for designing PSAs by fine-tuning the few spectral zeroes of a PSA to approximate a template FTF spectrum. The PSA’s spectral zeroes are moved (tuned) while gauging the plot changes on the resulting FTF’s magnitude.

© 2011 OSA

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 7, 2011
Revised Manuscript: April 25, 2011
Manuscript Accepted: April 25, 2011
Published: May 17, 2011

Citation
A. Gonzalez, M. Servin, J. C. Estrada, and J. A. Quiroga, "Design of phase-shifting algorithms by fine-tuning spectral shaping," Opt. Express 19, 10692-10697 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10692


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983). [CrossRef] [PubMed]
  2. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  3. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Taylor & Francis, CRC, 2005).
  4. K. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7(4), 542–551 (1990). [CrossRef]
  5. K. G. Larkin and B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9(10), 1740–1748 (1992). [CrossRef]
  6. J. Schwider, O. Falkenstörfer, H. Schreiber, H. Zöller, and N. Streibl, “New compensating four-phase algorithm for phase-shift interferometry,” Opt. Eng. 32(8), 1883–1885 (1993). [CrossRef]
  7. P. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34(22), 4723–4730 (1995). [CrossRef] [PubMed]
  8. J. Schmit and K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35(28), 5642–5649 (1996). [CrossRef] [PubMed]
  9. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996). [CrossRef] [PubMed]
  10. J. G. Proakis, and D. G. Manolakis, Digital Signal Processing, 4th ed. (Prentice Hall, 2007). [PubMed]
  11. J. Burke, “Extended averaging phase-shifting schemes for Fizeau interferometry on high-numerical aperture spherical surfaces,” Proc. of SPIE 7790, (2010).
  12. M. Servin, J. C. Estrada, and J. A. Quiroga, “The general theory of phase shifting algorithms,” Opt. Express 17(24), 21867–21881 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited