OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10728–10734

Laser erasable implanted gratings for integrated silicon photonics

Renzo Loiacono, Graham T. Reed, Goran Z. Mashanovich, Russell Gwilliam, Simon J. Henley, Youfang Hu, Ran Feldesh, and Richard Jones  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10728-10734 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we experimentally demonstrate laser erasable germanium implanted Bragg gratings in SOI. Bragg gratings are formed in a silicon waveguide by ion implantation induced amorphization, and are subsequently erased by a contained laser thermal treatment process. An extinction ratio up to 24dB has been demonstrated in transmission for the fabricated implanted Bragg gratings with lengths up to 1000µm. Results are also presented, demonstrating that the gratings can be selectively removed by UV pulsed laser annealing, enabling a new concept of laser erasable devices for integrated photonics.

© 2011 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

ToC Category:
Diffraction and Gratings

Original Manuscript: March 18, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 13, 2011
Published: May 17, 2011

Renzo Loiacono, Graham T. Reed, Goran Z. Mashanovich, Russell Gwilliam, Simon J. Henley, Youfang Hu, Ran Feldesh, and Richard Jones, "Laser erasable implanted gratings for integrated silicon photonics," Opt. Express 19, 10728-10734 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Photonics, The State of the Art (WileyBlackwell, 2008).
  2. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001). [CrossRef]
  3. L. Liao, M. Paniccia, A. Liu, and S. Pang, “Tunable Bragg Grating filters in SOI waveguides,” in Optical Amplifiers and Their Applications/Integrated Photonics Research, OSA Integrated Photonics Research Technical Digest, paper IThE2 (2004).
  4. R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” 2nd IEEE International Conference on Group IV Photonics (2005).
  5. M. P. Bulk, A. P. Knights, and P. E. Jessop, “Ion implanted Bragg gratings in SOI waveguides,” Photonics North 2007 (2008), Vol. 6796, pp. 1–9.
  6. S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S240–S243 (2009). [CrossRef]
  7. E. Rimini, Ion Implantation: Basics to Device Fabrication, The Springer International Series in Engineering and Computer Science (Springer, 1994).
  8. M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
  9. H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959). [CrossRef]
  10. E. C. Baranova, V. M. Gusev, Y. V. Martynenko, C. V. Starinin, and I. B. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1), 21–26 (1973). [CrossRef]
  11. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. Van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649 (2002). [CrossRef]
  12. G. Hobler and G. Otto, “Status and open problems in modeling of as-implanted damage in silicon,” Mater. Sci. Semicond. Process. 6(1-3), 1–14 (2003). [CrossRef]
  13. N. P. Barradas, K. Arstila, G. Battistig, M. Bianconi, N. Dytlewski, C. Jeynes, E. Kotai, G. Lulli, M. Mayer, E. Rauhala, E. Szilagyi, and M. Thompson, “International atomic energy agency intercomparison of ion beam analysis software,” Nucl. Instrum. Methods Phys. Res. B 262(2), 281–303 (2007). [CrossRef]
  14. A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008). [CrossRef]
  15. A. Yariv and P. Yeh, Optical Waves in Crystal (John Wiley & Sons, 1983).
  16. Fimmwave by Photon Design, http://www.photond.com/ (2010).
  17. L. Pelaz, L. A. Marques, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96(11), 5947–5976 (2004). [CrossRef]
  18. R. Delmdahl, “The excimer laser: precision engineering,” Nat. Photonics 4(5), 286–287 (2010). [CrossRef]
  19. A. A. D. T. Adikaari, N. K. Mudugamuwa, and S. R. P. Silva, “Nanocrystalline silicon solar cells from excimer laser crystallization of amorphous silicon,” Sol. Energy Mater. Sol. Cells 92(6), 634–638 (2008). [CrossRef]
  20. J. M. Poate and J. W. Mayer, eds., Laser Annealing of Semiconductors (Academic, 1982).
  21. J. Bolten, J. Hofrichter, N. Moll, S. Schonenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86(4-6), 1114–1116 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited