OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10747–10761

Multi-modality optical neural imaging using coherence control of VCSELs

Elizabeth A. Munro, Hart Levy, Dene Ringuette, Thomas D. O’Sullivan, and Ofer Levi  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10747-10761 (2011)
http://dx.doi.org/10.1364/OE.19.010747


View Full Text Article

Enhanced HTML    Acrobat PDF (1481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: Neural optical imaging can evaluate cortical hemodynamic fluctuations which reflect neural activity and disease state. We evaluate the use of vertical-cavity surface-emitting lasers (VCSELs) as illumination source for simultaneous imaging of blood flow and tissue oxygenation dynamics ex vivo and in vivo and demonstrate optical imaging of blood flow changes and oxygenation changes in response to induced ischemia. Using VCSELs we show a rapid switching from a single-mode to a special multi-mode rapid current sweep operation and noise values reduced to within a factor of 40% compared to non-coherent LED illumination. These VCSELs are promising for long-term portable continuous monitoring of brain dynamics in freely moving animals.

© 2011 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 4, 2011
Revised Manuscript: May 10, 2011
Manuscript Accepted: May 16, 2011
Published: May 18, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Elizabeth A. Munro, Hart Levy, Dene Ringuette, Thomas D. O’Sullivan, and Ofer Levi, "Multi-modality optical neural imaging using coherence control of VCSELs," Opt. Express 19, 10747-10761 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). [CrossRef] [PubMed]
  2. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001). [CrossRef]
  3. A. Ponticorvo and A. K. Dunn, “How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow,” J. Vis. Exp. 45(45), (2010), http://www.jove.com/details.stp?id=2004 . [PubMed]
  4. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009–016014 (2011). [CrossRef] [PubMed]
  5. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008). [CrossRef] [PubMed]
  6. A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010). [CrossRef]
  7. J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010). [CrossRef] [PubMed]
  8. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009). [CrossRef] [PubMed]
  9. T. Durduran, C. Zhou, B. L. Edlow, G. Q. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009). [CrossRef] [PubMed]
  10. M. J. Rossow, W. W. Mantulin, and E. Gratton, “Scanning laser image correlation for measurement of flow,” J. Biomed. Opt. 15(2), 026003 (2010). [CrossRef] [PubMed]
  11. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010). [CrossRef] [PubMed]
  12. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986). [CrossRef] [PubMed]
  13. V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003). [CrossRef] [PubMed]
  14. A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).
  15. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990). [CrossRef] [PubMed]
  16. C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007). [CrossRef] [PubMed]
  17. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007). [CrossRef] [PubMed]
  18. E. Gratton, V. Toronov, U. Wolf, and M. Wolf, “Detection of brain activity by near-infrared light,” in Biomedical Optical Imaging, J. G. Fujimoto and D. Farkas, eds. (Oxford University Press, New York, 2009), p. 356.
  19. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007). [CrossRef]
  20. T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007). [CrossRef]
  21. H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008). [CrossRef] [PubMed]
  22. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009). [CrossRef] [PubMed]
  23. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008). [CrossRef] [PubMed]
  24. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef] [PubMed]
  25. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009). [CrossRef] [PubMed]
  26. Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009). [CrossRef] [PubMed]
  27. T. O’Sullivan, E. A. Munro, N. Parashurama, C. Conca, S. S. Gambhir, J. S. Harris, and O. Levi, “Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules,” Opt. Express 18(12), 12513–12525 (2010). [CrossRef] [PubMed]
  28. R. Michalzik and K. J. Ebeling, “Operating principles of VCSELs,” in Vertical-Cavity Surface-Emitting Laser Devices, H. Li and K. Iga, eds. (Springer-Verlag, Berlin, 2003), pp. 53–98.
  29. T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008). [CrossRef]
  30. A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008). [CrossRef] [PubMed]
  31. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, Hoboken, NJ, 2007).
  32. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976). [CrossRef]
  33. G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009). [CrossRef]
  34. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008). [CrossRef] [PubMed]
  35. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17(16), 13904–13917 (2009). [CrossRef] [PubMed]
  36. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited