OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10857–10863

Deep ultraviolet diamond Raman laser

Eduardo Granados, David J. Spence, and Richard P. Mildren  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10857-10863 (2011)
http://dx.doi.org/10.1364/OE.19.010857


View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a synchronously pumped diamond Raman laser operating at 275.7 nm pumped by the 4th harmonic of a mode locked Nd:YVO4 laser. The laser had a threshold pump pulse energy of 5.8 nJ and generated up to 0.96 nJ pulses at 10.3% conversion efficiency. The results agree well with a numerical model that includes two-photon absorption of the pump and Stokes beams and uses a Raman gain coefficient of diamond of 100 cm/GW. We also report on the observation of nanometer scale two-photon assisted etching of the diamond crystal surfaces.

© 2011 OSA

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 16, 2011
Revised Manuscript: April 6, 2011
Manuscript Accepted: April 25, 2011
Published: May 19, 2011

Citation
Eduardo Granados, David J. Spence, and Richard P. Mildren, "Deep ultraviolet diamond Raman laser," Opt. Express 19, 10857-10863 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10857


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002). [CrossRef]
  2. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008). [CrossRef]
  3. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004). [CrossRef] [PubMed]
  4. D. W. Coutts and A. J. S. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004). [CrossRef]
  5. E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser,” Opt. Lett. 34(11), 1660–1662 (2009). [CrossRef] [PubMed]
  6. M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron. 13(3), 679–691 (2007). [CrossRef]
  7. R. P. Mildren, H. Ogilvy, and J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32(7), 814–816 (2007). [CrossRef] [PubMed]
  8. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004). [CrossRef] [PubMed]
  9. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999). [CrossRef]
  10. J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993). [CrossRef] [PubMed]
  11. A. Zunger, “Practical doping principles,” Appl. Phys. Lett. 83(1), 57–59 (2003). [CrossRef]
  12. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999). [CrossRef]
  13. V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005). [CrossRef]
  14. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008). [CrossRef]
  15. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009). [CrossRef] [PubMed]
  16. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010). [CrossRef] [PubMed]
  17. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “An intra-cavity Raman laser using synthetic single-crystal diamond,” Opt. Express 18(16), 16765–16770 (2010). [CrossRef] [PubMed]
  18. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010). [CrossRef] [PubMed]
  19. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010). [CrossRef] [PubMed]
  20. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003). [CrossRef]
  21. E. Granados and D. J. Spence, “Pulse compression in synchronously pumped mode locked Raman lasers,” Opt. Express 18(19), 20422–20427 (2010). [CrossRef] [PubMed]
  22. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16(7), 499–501 (1991). [CrossRef] [PubMed]
  23. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995). [CrossRef]
  24. F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008). [CrossRef]
  25. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007). [CrossRef]
  26. V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007). [CrossRef]
  27. H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197-198, 107–113 (2002). [CrossRef]
  28. B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005). [CrossRef]
  29. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009). [CrossRef] [PubMed]
  30. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18(5), 5289–5294 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited