OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10896–10906

Surface relief model for photopolymers without cover plating

S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10896-10906 (2011)
http://dx.doi.org/10.1364/OE.19.010896


View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information to characterize and understand the material behaviour. In this paper we present a 3-dimensional model based on direct measurements of parameters to predict the relief structures generated on the material. This model is successfully applied to different photopolymers with different values of monomer diffusion. The importance of monomer diffusion in depth is also discussed.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(090.2900) Holography : Optical storage materials

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 21, 2011
Revised Manuscript: May 9, 2011
Manuscript Accepted: May 9, 2011
Published: May 20, 2011

Citation
S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, "Surface relief model for photopolymers without cover plating," Opt. Express 19, 10896-10906 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010). [CrossRef]
  2. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006). [CrossRef]
  3. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000). [CrossRef]
  4. G. P. Nordinand and A. R. Tanguay., “Photopolymer-based stratified volume holographic optical elements,” Opt. Lett. 17(23), 1709–1711 (1992). [CrossRef] [PubMed]
  5. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005). [CrossRef]
  6. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006). [CrossRef] [PubMed]
  7. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007). [CrossRef] [PubMed]
  8. R. K Kostuk, J. Castro, D. Zhang “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  9. A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010). [CrossRef]
  10. S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005). [CrossRef]
  11. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16(12), 8487–8497 (2008). [CrossRef] [PubMed]
  12. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011). [CrossRef]
  13. S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008). [CrossRef]
  14. L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Physica A 246(3-4), 591–608 (1997). [CrossRef]
  15. S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5-6), 317–321 (1999). [CrossRef]
  16. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009). [CrossRef] [PubMed]
  17. S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).
  18. T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12(12), 124011 (2010). [CrossRef]
  19. K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010). [CrossRef]
  20. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008). [CrossRef] [PubMed]
  21. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  22. S. Wu and E. N. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20(6), 1177–1188 (2003). [CrossRef]
  23. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011). [CrossRef]
  24. S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007). [CrossRef]
  25. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009). [CrossRef] [PubMed]
  26. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005). [CrossRef] [PubMed]
  27. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005). [CrossRef] [PubMed]
  28. J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32(17), 5655–5659 (1999). [CrossRef]
  29. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32(6), 1828–1837 (1999). [CrossRef]
  30. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41(5), 845–852 (2002). [CrossRef] [PubMed]
  31. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  32. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005). [CrossRef]
  33. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010). [CrossRef]
  34. K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent,” Biochem. Pharmacol. 19(9), 2591–2604 (1970). [CrossRef] [PubMed]
  35. M. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem. 51(16), 4504–4526 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1848 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited