OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10986–10996

Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers

Mutlu Erdoǧan, Bülent Öktem, Hamit Kalaycıoǧlu, Seydi Yavaş, Pranab K. Mukhopadhyay, Koray Eken, Kıvanç Özgören, Yaşar Aykaç, Uygar H. Tazebay, and F. Ömer Ilday  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10986-10996 (2011)
http://dx.doi.org/10.1364/OE.19.010986


View Full Text Article

Enhanced HTML    Acrobat PDF (4120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3510) Lasers and laser optics : Lasers, fiber
(170.1850) Medical optics and biotechnology : Dentistry
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 18, 2011
Revised Manuscript: May 11, 2011
Manuscript Accepted: May 11, 2011
Published: May 20, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Mutlu Erdoǧan, Bülent Öktem, Hamit Kalaycıoǧlu, Seydi Yavaş, Pranab K. Mukhopadhyay, Koray Eken, Kıvanç Özgören, Yaşar Aykaç, Uygar H. Tazebay, and F. Ömer Ilday, "Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers," Opt. Express 19, 10986-10996 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10986


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005). [CrossRef]
  2. K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials 21, 667–681 (2000). [CrossRef] [PubMed]
  3. R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).
  4. J. B. Park, The Biomedical Engineering Handbook: Second Edition , Joseph D. Bronzino, ed. (CRC Press LLC, 2000), Vol. II.
  5. I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999). [CrossRef] [PubMed]
  6. L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005). [CrossRef]
  7. A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002). [CrossRef] [PubMed]
  8. S. I. Anisimov and B. Rethfeld, “Theory of ultrashort laser pulse interaction with a metal,” Proc. SPIE 3093, 192–203 (1997). [CrossRef]
  9. C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997). [CrossRef]
  10. M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006). [CrossRef]
  11. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006). [CrossRef] [PubMed]
  12. A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007). [CrossRef]
  13. E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.
  14. A. Y. Vorobyev and C. Guo, “Femtosecond laser surface structuring of biocompatible metals,” Proc. SPIE 7203, 720321 (2009).
  15. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006). [CrossRef] [PubMed]
  16. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  17. P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009). [CrossRef]
  18. H. Kalaycioglu, B. Oktem, C. Senel, P. P. Paltani, and F. Ö. Ilday, “Micro joule-energy, 1 MHz-repetition rate pulses from an all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35, 959–961 (2010). [CrossRef] [PubMed]
  19. M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004). [CrossRef]
  20. I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999). [CrossRef] [PubMed]
  21. U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001). [CrossRef] [PubMed]
  22. Y. P. Kathuria, “Laser microprocessing of metallic stent for medical therapy,” J. Mater. Process. Technol. 170(3), 545–550 (2005). [CrossRef]
  23. K. Weman, Welding Processes Handbook (CRC Press LLC, 2003).
  24. I. Etsion, “Improving tribological performance of mechanical components by laser surface texturing,” Tribol. Lett. 17, 733–737 (2004). [CrossRef]
  25. S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, Zn F2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967). [CrossRef]
  26. H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007). [CrossRef]
  27. D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999). [CrossRef] [PubMed]
  28. D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” J. Prosthet. Dent. 78(4), 379–386 (1997). [CrossRef] [PubMed]
  29. P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005). [CrossRef]
  30. J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited