OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11084–11089

Demonstration of two-dimensional photonic crystals based on silicon carbide

Bong-Shik Song, Shota Yamada, Takashi Asano, and Susumu Noda  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11084-11089 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate two-dimensional photonic crystals of silicon carbide (SiC)—a wide bandgap semiconductor and one of the hardest materials—at near-infrared wavelengths. Although the refractive index of SiC is lower than that of a conventional semiconductor such as GaAs or Si, we show theoretically that a wide photonic bandgap, a broadband waveguide, and a high-quality nanocavity comparable to those of previous photonic crystals can be obtained in SiC photonic crystals. We also develop a process for fabricating SiC-based photonic crystals that experimentally show a photonic bandgap of 200 nm, a waveguide with a 40-nm bandwidth, and a nanocavity with a high quality factor of 4,500. This demonstration should stimulate further development of resilient and stable photonics at high power and high temperature analogous to SiC power electronics.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 22, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: May 10, 2011
Published: May 23, 2011

Bong-Shik Song, Shota Yamada, Takashi Asano, and Susumu Noda, "Demonstration of two-dimensional photonic crystals based on silicon carbide," Opt. Express 19, 11084-11089 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  3. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003). [CrossRef] [PubMed]
  4. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  5. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  6. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef] [PubMed]
  7. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm,” Opt. Lett. 33(16), 1908–1910 (2008). [CrossRef] [PubMed]
  8. C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007). [CrossRef]
  9. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008). [CrossRef]
  10. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004). [CrossRef]
  11. G. L. Harris, Properties of Silicon Carbide (Inspec,1995).
  12. . A. Cooper and A. Agarwal, “SiC power-switching devices-the second electronics revolution?” Proc. IEEE 90(6), 956–968 (2002). [CrossRef]
  13. G. T. Reed, and A. P. Knights, Silicon photonics (Wiley, 2004)
  14. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon-carbide-based two-dimensional photonic crystal nanocavities,” in Conference on Lasers and Electro-Optics Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science (QELS), (2010), paper CWB4.
  15. J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010). [CrossRef]
  16. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  17. S.-W. Jeon, J. K. Han, B. S. Song, and S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010). [CrossRef] [PubMed]
  18. J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002). [CrossRef] [PubMed]
  19. L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited