OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11280–11289

A nanoplasmonic probe for near-field imaging

J. A. J. Backs, S. Sederberg, and A. Y. Elezzabi  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11280-11289 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a nanoplasmonic probe that incorporates a subwavelength aperture coupled to a fine probing tip. This probe is used in a hybrid near-field scanning optical microscope and atomic force microscope system that can simultaneously map the optical near-field and the topography of nanostructures. By spatially isolating but optically coupling the aperture and the localizing point, we obtained near-field images at a resolution of 45 nm, corresponding to λ/14. This nanoplasmonic probe design overcomes the resolution challenges of conventional apertured near-field optical probes and can provide substantially higher resolution than demonstrated in this work.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: April 5, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 22, 2011
Published: May 25, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

J. A. J. Backs, S. Sederberg, and A. Y. Elezzabi, "A nanoplasmonic probe for near-field imaging," Opt. Express 19, 11280-11289 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. Schuller, and M. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006). [CrossRef]
  2. M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91(10), 103118 (2007). [CrossRef]
  3. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006). [CrossRef]
  4. R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010). [CrossRef] [PubMed]
  5. N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993). [CrossRef]
  6. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000). [CrossRef]
  7. A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002). [CrossRef]
  8. J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008). [CrossRef]
  9. M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009). [CrossRef] [PubMed]
  10. P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007). [CrossRef]
  11. S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006). [CrossRef]
  12. R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999). [CrossRef]
  13. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005). [CrossRef]
  14. H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  15. R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008). [CrossRef]
  16. Y. Zou and K. B. Crozier, “Experimental measurement of surface plasmon resonance of pyramidal metal nanoparticle tips,” Proc. SPIE 7033, 70331X (2008). [CrossRef]
  17. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002). [CrossRef] [PubMed]
  18. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992). [CrossRef] [PubMed]
  19. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995). [CrossRef] [PubMed]
  20. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994). [CrossRef] [PubMed]
  21. R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009). [CrossRef] [PubMed]
  22. M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15(16), 10163–10174 (2007). [CrossRef] [PubMed]
  23. In particular, our nanoplasmonic probe had an imperfectly pyramidal tip (Fig. 3), a gold coating, and a large aperture, while the numerically-studied probe [22] had a perfectly conical tip, a metal coating of different thickness and material (silver), a different cantilever thickness, and a smaller cone angle. These differences preclude any quantitative comparison between the optical properties of the two probes.
  24. R. Qiang, R. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004). [CrossRef]
  25. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited