OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11355–11364

Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus

C. Pouya, D. G. Stavenga, and P. Vukusic  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11355-11364 (2011)
http://dx.doi.org/10.1364/OE.19.011355


View Full Text Article

Enhanced HTML    Acrobat PDF (953 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The outer wing casings (elytra) of the weevil Eupholus magnificus are marked by yellow and blue bands. We have investigated the scales covering the elytra by using microspectrophotometry, imaging scatterometry, scanning electron microscopy and Fourier transform analysis. We demonstrate that the scales in the yellow elytral bands comprise highly ordered 3D photonic crystal structures, whereas the scales of the blue bands comprise quasi-ordered 3D photonic structures. Both systems, highly contrasting in their periodic order, create approximately angle-independent colour appearances in the far-field. The co-existence of these two contrasting forms of 3D structural order in the same single species is certainly uncommon in natural biological systems and has not been reported in the photonic literature.

© 2011 OSA

OCIS Codes
(160.1435) Materials : Biomaterials
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 1, 2011
Manuscript Accepted: March 31, 2011
Published: May 26, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
C. Pouya, D. G. Stavenga, and P. Vukusic, "Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus," Opt. Express 19, 11355-11364 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11355


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition) (Princeton University Press, Princeton, NJ, 2008).
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  3. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35(15), 2523–2525 (2010). [CrossRef] [PubMed]
  4. H. Altug, D. EnglUnd, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006). [CrossRef]
  5. D. Levine and P. Steinhardt, “Quasicrystals: A New Class of Ordered Structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984). [CrossRef]
  6. M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000). [CrossRef]
  7. H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010). [CrossRef]
  8. A. Parker, D. McKenzie, and M. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).
  9. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003). [CrossRef] [PubMed]
  10. K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006). [CrossRef] [PubMed]
  11. L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007). [CrossRef]
  12. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008). [CrossRef] [PubMed]
  13. M. Srinivasarao, “Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths,” Chem. Rev. 99(7), 1935–1962 (1999). [CrossRef]
  14. S. Kinoshita, Structural Colours in the Realm of Nature (World Scientific, Singapore, 2008).
  15. O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006). [CrossRef] [PubMed]
  16. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007). [CrossRef] [PubMed]
  17. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).
  18. E. J. Denton, “Reflectors in fishes,” Sci. Am. 224(1), 64–72 (1971). [CrossRef]
  19. T. M. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete worm Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(6), 061908 (2009). [CrossRef]
  20. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008). [CrossRef]
  21. K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface 7(46), 765–771 (2010). [CrossRef]
  22. P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007). [CrossRef] [PubMed]
  23. J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005). [CrossRef] [PubMed]
  24. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009). [CrossRef] [PubMed]
  25. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009). [PubMed]
  26. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009). [CrossRef] [PubMed]
  27. A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
  28. V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010). [CrossRef] [PubMed]
  29. M. C. Hutley, Diffraction Gratings, Techniques of Physics 6 (Academic Press, London, 1982).
  30. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations-Concepts and Applications of Voronoi Diagrams (Second Edition). (John Wiley and Sons, Chichester, 2000).
  31. A. P. Li, F. Müller, and U. Gösele, “Electrochem. “Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Solid-St. 3, 155112 (2000).
  32. R. O. Prum and R. H. Torres, “Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 207(12), 2157–2172 (2004). [CrossRef] [PubMed]
  33. M. Florescu, S. Torquato, and P. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80(15), 155112 (2009). [CrossRef]
  34. P. Vukusic, and J. R. Sambles, “Shedding light on butterfly wings” Proc. SPIE 4438, 0277–786X/01 (2001).
  35. C. C. Cheng and A. Scherer, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15(6), 2764–2767 (1997). [CrossRef]
  36. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000). [CrossRef]
  37. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003). [CrossRef]
  38. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004). [CrossRef] [PubMed]
  39. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008). [CrossRef] [PubMed]
  40. T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009). [CrossRef]
  41. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited