OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11429–11440

Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems

Gangjun Liu, Lidek Chou, Wangcun Jia, Wenjuan Qi, Bernard Choi, and Zhongping Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11429-11440 (2011)
http://dx.doi.org/10.1364/OE.19.011429


View Full Text Article

Enhanced HTML    Acrobat PDF (1293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The traditional phase-resolved Doppler method demonstrates great success for in-vivo imaging of blood flow and blood vessels. However, the phase-resolved method always requires high phase stability of the system. In phase instable situations, the performance of the phase-resolved methods will be degraded. We propose a modified Doppler variance algorithm that is based on the intensity or amplitude value. Performances of the proposed algorithm are compared with traditional phase-resolved Doppler variance and color Doppler methods for both phase stable and phase instable systems. For the phase instable situation, the proposed algorithm demonstrates images without phase instability induced artifacts. In-vivo imaging of window-chamber hamster skin is demonstrated for phase instable situation with a spectrometer-based Fourier domain OCT system. A microelectromechanical systems (MEMS) based swept source OCT (SSOCT) system is also used to demonstrate the performance of the proposed method in a phase instable situation. The phase stability of the SSOCT system is analyzed. In-vivo imaging of the blood vessel of human skin is demonstrated with the proposed method and the SSOCT system. For the phase stable situation, the proposed algorithm also demonstrates comparable performance with traditional phase-resolved methods. In-vivo imaging of the human choroidal blood vessel network is demonstrated with the proposed method under the phase stable situation. Depth-resolved fine choroidal blood vessel networks are shown.

© 2011 OSA

OCIS Codes
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 30, 2011
Revised Manuscript: May 8, 2011
Manuscript Accepted: May 20, 2011
Published: May 27, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Gangjun Liu, Lidek Chou, Wangcun Jia, Wenjuan Qi, Bernard Choi, and Zhongping Chen, "Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems," Opt. Express 19, 11429-11440 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11429


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 . [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-14-1119 . [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-18-1439 . [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 . [CrossRef]
  6. R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010). [CrossRef] [PubMed]
  7. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-5-4177 . [CrossRef] [PubMed]
  8. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010). [CrossRef] [PubMed]
  9. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5483 . [CrossRef] [PubMed]
  10. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5234 . [CrossRef] [PubMed]
  11. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-13 . [CrossRef] [PubMed]
  12. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-8-1257 . [CrossRef] [PubMed]
  13. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-6121 . [CrossRef] [PubMed]
  14. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics , 4:n/a (2011), doi: http://onlinelibrary.wiley.com/doi/10.1002/jbio.201000103/pdf [PubMed]
  15. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 . [CrossRef]
  16. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-6-409 . [CrossRef]
  17. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3657 . [CrossRef] [PubMed]
  18. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009). [CrossRef] [PubMed]
  19. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449 . [CrossRef] [PubMed]
  20. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17(15), 12385–12396 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12385 . [CrossRef] [PubMed]
  21. B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:. [CrossRef]
  22. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-25-3490 . [CrossRef] [PubMed]
  23. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003), http://www.opticsinfobase.org/abstract.cfm?uri=oe-11-23-3116 . [CrossRef] [PubMed]
  24. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 . [CrossRef] [PubMed]
  25. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438 . [CrossRef] [PubMed]
  26. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010). [CrossRef] [PubMed]
  27. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-9- . [CrossRef] [PubMed]
  28. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-24-22190 . [CrossRef] [PubMed]
  29. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-26-23736 . [CrossRef]
  30. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-2-1217 . [CrossRef] [PubMed]
  31. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-2-1271 . [CrossRef] [PubMed]
  32. T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited