OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11441–11450

Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors

Chen-Han Huang, Hsing-Ying Lin, Shihtse Chen, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11441-11450 (2011)
http://dx.doi.org/10.1364/OE.19.011441


View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel SERS sensor for adenine molecules is fabricated electrochemically using an ordered two-dimensional array of self-aligned silver nanoparticles encapsulated by alumina. Silver is electro-deposited on the interior surfaces at the bottom of nano-channels in a porous anodic aluminum oxide (AAO) film. After etching aluminum, the back-end alumina serves as a SERS substrate. SERS enhancement factor greater than 106 is measured by 532 nm illumination. It exhibits robust chemical stability and emits reproducible Raman signals from repetitive uses for eight weeks. The inexpensive mass production process makes this reliable, durable and sensitive plasmon based optical device promising for many applications.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Sensors

History
Original Manuscript: April 11, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: May 26, 2011
Published: May 27, 2011

Citation
Chen-Han Huang, Hsing-Ying Lin, Shihtse Chen, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng, "Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors," Opt. Express 19, 11441-11450 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11441


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  2. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999). [CrossRef]
  3. B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003). [CrossRef] [PubMed]
  4. T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010). [CrossRef] [PubMed]
  5. H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981). [CrossRef]
  6. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998). [CrossRef]
  7. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004). [CrossRef] [PubMed]
  8. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004). [CrossRef] [PubMed]
  9. J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005). [CrossRef]
  10. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008). [CrossRef] [PubMed]
  11. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996). [CrossRef] [PubMed]
  12. E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004). [CrossRef]
  13. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010). [CrossRef] [PubMed]
  14. R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007). [CrossRef]
  15. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003). [CrossRef]
  16. J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007). [CrossRef] [PubMed]
  17. G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006). [CrossRef]
  18. V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007). [CrossRef]
  19. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006). [CrossRef]
  20. S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004). [CrossRef]
  21. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008). [CrossRef]
  22. H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008). [CrossRef] [PubMed]
  23. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008). [CrossRef]
  24. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
  25. K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000). [CrossRef]
  26. C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010). [CrossRef]
  27. A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005). [CrossRef]
  28. B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011). [CrossRef]
  29. T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003). [CrossRef]
  30. J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991). [CrossRef]
  31. S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985). [CrossRef]
  32. B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002). [CrossRef]
  33. I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990). [CrossRef]
  34. B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999). [CrossRef]
  35. L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000). [CrossRef]
  36. X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006). [CrossRef] [PubMed]
  37. K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited