OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11463–11470

Efficient heterodyne CARS measurement by combining spectral phase modulation with temporal delay technique

Takayuki Suzuki and Kazuhiko Misawa  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11463-11470 (2011)
http://dx.doi.org/10.1364/OE.19.011463


View Full Text Article

Enhanced HTML    Acrobat PDF (1555 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate an improved heterodyne coherent anti-Stokes Raman scattering (CARS) measurement with a rapid phase modulation and temporal displacement of the background, to simplify signal extraction and effectively reduce a nonresonant background (NRB). This method is a modification of the single-beam CARS spectroscopy originally proposed by Oron et al. in which a narrowband phase modulation is used to enhance contrast between resonant signals and the NRB through heterodyne detection [Phys. Rev. Lett. 89, 273001 (2002)]. In our scheme, a large delay between the narrow- and broadband components enables us to reduce the NRB while maintaining signal enhancement by heterodyne detection. We develop a frequency-resolved Michelson interferometer in which the narrow- and broadband components are spatially separated and recombined with an arbitrary delay. We show that sharp Raman lines can be obtained from chloroform molecules by the observation of difference spectra and phase sensitive detection. The spectral resolution achieved, which is limited by that of the spectrometer we used, is < 8 cm−1. This method can potentially be extended to make real-time measurements by further developing a spectrometer that directly accumulates difference spectra.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(320.5540) Ultrafast optics : Pulse shaping
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 20, 2011
Revised Manuscript: May 22, 2011
Manuscript Accepted: May 22, 2011
Published: May 27, 2011

Citation
Takayuki Suzuki and Kazuhiko Misawa, "Efficient heterodyne CARS measurement by combining spectral phase modulation with temporal delay technique," Opt. Express 19, 11463-11470 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990). [CrossRef] [PubMed]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). [CrossRef] [PubMed]
  3. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009). [CrossRef] [PubMed]
  4. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  5. A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653–667 (2000). [CrossRef]
  6. W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976). [CrossRef]
  7. Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32, 3370–3372 (2007). [CrossRef] [PubMed]
  8. J.-L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979). [CrossRef]
  9. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).
  10. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002). [CrossRef]
  11. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002). [CrossRef]
  12. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003). [CrossRef] [PubMed]
  13. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31, 2495–2497 (2006). [CrossRef] [PubMed]
  14. B.-C. Chen and S.-H. Lin, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 112, 3653–3661 (2008). [CrossRef] [PubMed]
  15. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express 17, 11259–11266 (2009). [CrossRef] [PubMed]
  16. Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011). [CrossRef] [PubMed]
  17. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002). [CrossRef]
  18. Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 041108 (2008). [CrossRef]
  19. M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).
  20. E. Frumker, E. Tal, and Y. Silberberg, “Femtosecond pulse-shape modulation at nanosecond rates,” Opt. Lett. 30, 2769–2798 (2005). [CrossRef]
  21. R. W. Wood and D. H. Rank, “The Raman spectrum of heavy chloroform,” Phys. Rev. 48, 63–65 (1935). [CrossRef]
  22. K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006). [CrossRef]
  23. K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127, 159901 (2007). [CrossRef]
  24. N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited