OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11558–11567

Vectorial coherence holography

Rakesh Kumar Singh, Dinesh N. Naik, Hitoshi Itou, Yoko Miyamoto, and Mitsuo Takeda  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11558-11567 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Extension of coherence holography to vectorial regime is investigated. A technique for controlling and synthesizing optical fields with desired elements of coherence-polarization matrix is proposed and experimentally demonstrated. The technique uses two separate coherence holograms, each of which is assigned to one of the orthogonal polarization components of the vectorial fields.

© 2011 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(090.2880) Holography : Holographic interferometry
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: March 31, 2011
Revised Manuscript: May 16, 2011
Manuscript Accepted: May 16, 2011
Published: May 31, 2011

Rakesh Kumar Singh, Dinesh N. Naik, Hitoshi Itou, Yoko Miyamoto, and Mitsuo Takeda, "Vectorial coherence holography," Opt. Express 19, 11558-11567 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13(23), 9629–9635 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-23-9629 . [CrossRef] [PubMed]
  2. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift,” Opt. Express 17(13), 10633–10641 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-13-10633 . [CrossRef] [PubMed]
  3. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39(23), 4107–4111 (2000). [CrossRef]
  4. P. Pavliček, M. Halouzka, Z. Duan, and M. Takeda, “Spatial coherence profilometry on tilted surfaces,” Appl. Opt. 48(34), H40–H47 (2009). [CrossRef] [PubMed]
  5. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator,” Opt. Express 14(25), 12109–12121 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12109 . [CrossRef] [PubMed]
  6. W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96(7), 073902 (2006). [CrossRef] [PubMed]
  7. E. Baleine and A. Dogariu, “Variable coherence tomography,” Opt. Lett. 29(11), 1233–1235 (2004). [CrossRef] [PubMed]
  8. H. H. Hopkins, “The concept of partial coherence in optics,” Proc. R. Soc. Lond. A Math. Phys. Sci. 208(1093), 263–277 (1951). [CrossRef]
  9. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A Math. Phys. Sci. 217(1130), 408–432 (1953). [CrossRef]
  10. H. H. Hopkins, “Image formation with coherent and partially coherent light,” Photograph. Sci. Eng. 21, 114–122 (1977).
  11. A. W. McCollough and G. M. Gallatin, “Illumination system with spatially controllable partial coherence compensation for line width variance in a photolithographic system,” US Patent 6628370 B1 (2003).
  12. D. P. Brown and T. G. Brown, “Partially correlated azimuthal vortex illumination: coherence and correlation measurements and effects in imaging,” Opt. Express 16(25), 20418–20426 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-25-20418 . [CrossRef] [PubMed]
  13. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).
  14. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts-Company, 2006).
  15. J. Sorrentini, M. Zerrad, and C. Amra, “Statistical signatures of random media and their correlation to polarization properties,” Opt. Lett. 34(16), 2429–2431 (2009). [CrossRef] [PubMed]
  16. J. Broky and A. Dogariu, “Complex degree of mutual polarization in randomly scattered fields,” Opt. Express 18(19), 20105–20113 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-19-20105 . [CrossRef] [PubMed]
  17. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23(4), 241–243 (1998). [CrossRef]
  18. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003). [CrossRef]
  19. J. Tervo, T. Setala, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11(10), 1137–1143 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-4-1063 . [CrossRef] [PubMed]
  20. O. Korotkova and E. Wolf, “Generalized stokes parameters of random electromagnetic beams,” Opt. Lett. 30(2), 198–200 (2005). [CrossRef] [PubMed]
  21. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29(6), 536–538 (2004). [CrossRef] [PubMed]
  22. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, “Use of the van Cittert-Zernike theorem for partially polarized sources,” Opt. Lett. 25(17), 1291–1293 (2000). [CrossRef]
  23. A. S. Ostrovsky, G. Martínez-Niconoff, P. Martínez-Vara, and M. A. Olvera-Santamaría, “The van Cittert-Zernike theorem for electromagnetic fields,” Opt. Express 17(3), 1746–1752 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-3-1746 . [CrossRef] [PubMed]
  24. T. Shirai, “Some consequences of the van Cittert-Zernike theorem for partially polarized stochastic electromagnetic fields,” Opt. Lett. 34(23), 3761–3763 (2009). [CrossRef] [PubMed]
  25. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208(1-3), 9–16 (2002). [CrossRef]
  26. M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, “Synthesis of electromagnetic Schell-model sources,” J. Opt. Soc. Am. A 26(6), 1437–1443 (2009). [CrossRef]
  27. M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Commun. 213(4-6), 201–221 (2002). [CrossRef]
  28. D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19(2), 1408–1421 (2011). [CrossRef] [PubMed]
  29. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “Phase-shift coherence holography,” Opt. Lett. 35(10), 1728–1730 (2010). [CrossRef] [PubMed]
  30. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  31. D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “A highly stable interferometric technique for polarization measurement,” 156, Photonics (December 2010), IIT Guwahati, India.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited